

Federal Railroad Administration

Success Factors in the Reduction of Highway-Rail Grade Crossing Incidents from 1994 to 2003

Office of Research and Development Washington, D.C. 20590

DOT/FRA/ORD-09/05

April 2009

Notice

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Notice

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.

REPORT DOCU	JMENTATION PAGI	E	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existin data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.					
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE		3. REPORT TYPE AND DATES COVERED Final Report July 2005 – June 2006		
4. TITLE AND SUBTITLE 5. Success Factors in the Reduction of Highway-Rail Grade Crossing Incidents from 1994 to 2003				. FUNDING NUMBERS RR-03/EB013	
6. AUTHOR(S) Suzanne Horton, Anya Carrol David Skinner	l, Mina Chaudhary, Tashi Ngan	ndung, Jonathan Mozent	ter,		
7. PERFORMING ORGANIZATION NA U.S. Department of Transport	AME(S) AND ADDRESS(ES) ation		8 R	.PERFORMING ORGANIZATION EPORT NUMBER	
Research and Innovative Tech John A. Volpe National Trans Cambridge, MA 02142	nnology Administration portation Systems Center		Γ	DOT-VNTSC-FRA-09-01	
9. SPONSORING/MONITORING AGE U.S. Department of Transport	NCY NAME(S) AND ADDRESS(ES) ation		1 /	0. SPONSORING/MONITORING AGENCY REPORT NUMBER	
Federal Railroad Administration Office of Research and Development			DOT/FRA/ORD-09/05		
Washington. DC 20590					
11. SUPPLEMENTARY NOTES Safety of Highway-Railroad C	Grade Crossings series				
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		1	2b. DISTRIBUTION CODE	
This document is available to the public through the National Technical Information Service, Springfield, VA 22161.					
13. ABSTRACT (Maximum 200 words) Between the years 1994 and 2003, incidents at highway-rail grade crossings declined by 41.2 percent. The reasons for this decline were unknown. The John A. Volpe National Transportation Systems Center was tasked by the Federal Railroad Administration to identify the salient success factors in highway-rail grade crossing incident reduction. The success factors were analyzed and investigated using various qualitative and quantitative methods. Ten factors were identified as the most influential safety factors. The ten factors are: Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Crossing Closure and Grade Separation, Sight Lines Clearance, Warning Device Upgrades, the Grade Crossing Maintenance Rule, the Section 130 Program, Operation Lifesaver, and Railroad Mergers. Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Sight Lines Clearance, and the Grade Crossing Maintenance Rule were quantitatively analyzed with data from the Railroad Accident Incident Reporting System; they impacted 54 percent of the incidents and accounted for 79 percent of the reduction in incidents.14. SUBJECT TERMS15. NUMBER OF PAGES					
Accident reduction, highway-rail intersections, safety 114 16. PRICE CODE			114 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICA OF ABSTRACT Unclassified	EICATION 20. LIMITATION OF ABSTRACT		

Acknowledgements

The U.S. Department of Transportation (USDOT) Federal Railroad Administration (FRA) Office of Research and Development sponsored the work leading to this report, "Success Factors in the Reduction of Highway-Rail Grade Crossing Incidents from 1994 to 2003." The authors would like to extend special appreciation to James Smailes, Program Manager of High-Speed Rail and Grade Crossings, Track Research Division, FRA, for his guidance and support.

The authors would also like to acknowledge John Choros and Michael Coltman, Structures and Dynamics Division, USDOT John A. Volpe National Transportation Systems Center (Volpe Center), as the task managers for this work. This project was conducted under the auspices of the Highway-Rail Grade Crossing Safety Research Program, Rail and Transit Systems Division, Volpe Center.

Illustrations	vi
Tables	vii
Executive Summary	1
1.0 Introduction	4
1.1 Background	4
1.2 Research Methodology	4
1.3 Summary of Results	5
1.4 Similar Research	7
2.0 Research Approach	9
2.1 Databases	9
2.2 Changes in Database Structures	9
2.3 Analytic Tools Used	10
3.0 Phase I	11
3.1 Exposure	11
3.2 Success Factor Identification	12
3.3 Metric Selection	14
4.0 Phase II	15
4.1 Quantitative Analysis	15
4.2 Summary of Results	22
5.0 Phase III	24
5.1 Isolating Success Factors	24
5.2 Final Percent Impact and Percent Reduction	31
5.3 Kendall Partial Rank Correlation Coefficient	34
5.4 The Section 130 Program	37
5.5 Operation Lifesaver	38
5.6 Railroad Mergers-A Potential Success Factor	39
5.7 Summary of Results	42
6.0 Findings	44
6.1 Lessons Learned	44
6.2 Recommendations for Next Steps	45
7.0 Conclusions	49
Appendix A. FRA Accident/Incident Report	51
Appendix B. Comprehensive List of Success Factors	53
Appendix C. Percent Impact and Percent Reduction	61
Appendix D. Distribution of Incidents by Type of Vehicles	
Appendix E. An Analysis of Severity.	
Appendix F Activation Failure	80
Appendix G Breakdown of Isolated Success Factors	82
Appendix H Kendall Partial Rank Correlation for Crossing Closure	90
Appendix I. Kendall Partial Rank Correlation for Warning Device Upgrades	98
Appendix I Railroad Mergers	104
Appendix K Additional Sources	113
Acronyms	110
Glossary	120

Contents

Illustrations

Figure 1: Pareto Chart of Factors Involved in Incidents (Percent Impact)	7
Figure 2: Pareto Chart of Factors that Contributed to a Reduction of Incidents (Percer	ıt
Reduction)	7
Figure 3: Incident-Injury and Incident-Fatality Rates	14
Figure 4. Percent of VMT and Number of Incidents for Commercial versus Non-	
Commercial Vehicles	16
Figure 5. Incident Rate per Billion VMT for Commercial, Non-Commercial, and All	
Motor Vehicles	17
Figure 6. Incident Severity to the Train Occupant from Automobile, Truck, or Truck-	
Trailer	. 18
Figure 7: Proportion of Incidents by Time of Day	19
Figure 8: Activation Failure	20
Figure 9. Venn Diagram of Factors A,B,C (pre-isolation)	25
Figure 10. Venn Diagram of Isolated Factors and Isolated Interactions	25
Figure 11. Incidents Attributed to Commercial Drivers for 1994-2003	27
Figure 12. Incidents Attributed to Locomotive Conspicuity for 1994-2003	28
Figure 13. Incidents Attributed to Sight Lines Clearance for 1994-2003	29
Figure 14. Incidents Attributed to the Grade Crossing Maintenance Rule for 1994-200)3
	30
Figure 15. Incidents Attributed to More Reliable Motor Vehicles for 1994-2003	31
Figure 16. Pareto Chart of Factors Involved in Incidents (Percent Impact)	33
Figure 18. Kendall Partial Rank Correlation Coefficients for Crossing Closure	35
Figure 19. Kendall Partial Rank Correlation Coefficients for Warning Device Upgrad	es
	37
Figure 20. Highway-Rail Grade Crossing Incidents 1994-2003	43

Tables

Table 1. Final Percent Impact and Percent Reduction	2
Table 2. Phase II Percent Impact and Percent Reduction	6
Table 3. Factor Key for Pareto Charts	6
Table 4. Exposure Index and Incident Index	
Table 5. Phase II Percent Impact and Percent Reduction	
Table 6. Equations for Isolated Factors and Their Isolated Interactions	
Table 7. Final Percents Impact and Percents Reduction	
Table 8. Factor Key for Pareto Charts	
Table 9. Kendall Partial Rank Correlation Coefficient for Crossing Closure	e 35
Table 10. Kendall Partial Rank Correlation Coefficient for Warning Devic	e Upgrades 36
Table 11. Literature Relevant to the Section 130 Program	
Table 12. Literature Relevant to Operation Lifesaver	
Table 13. Class I Railroads at the Beginning and End of the Study Period .	
Table 14. Yearly Rates of Decline in Public and Private Crossing Incidents	s 41
Table 15. Public Crossing Incidents Reported for UP and Major Merger Pa	artners 41
Table 16. Public Crossing Incidents Reported for BNSF and Major Merger	r Partners 42

Executive Summary

Between the years 1994 and 2003, incidents at highway-rail grade crossings in the United States declined by 41.2 percent. This decline was likely in response to the variety of highway-rail grade crossing safety improvement programs that were conducted during that time period. The United States Department of Transportation (USDOT) Federal Railroad Administration (FRA) Office of Research and Development tasked the USDOT Research and Innovative Technology Administration John A. Volpe National Transportation Systems Center (Volpe Center) with determining the most influential safety factors responsible for the reduction of incidents from 1994 to 2003.

During the first phase of the project, the research team began to identify all of the possible factors that may have influenced safety at highway-rail grade crossings during the study period. This was done through extensive literature reviews and group discussions. The team then categorized the comprehensive list of success factors by the projected impact on incident reduction and perceived difficulty to analyze. At the conclusion of Phase I, the factors that rated a high projected impact were selected for further analysis. Those factors were Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Sight Lines Clearance, Grade Crossing Maintenance Rule, Crossing Closure and Grade Separation, Warning Device Upgrades, Traffic Signal Preemption, Operation Lifesaver, and the Section 130 Program.

The second phase of the project was a quantitative analysis of the factors that were rated easy or moderate for perceived difficulty to analyze (Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Sight Lines Clearance, Grade Crossing Maintenance Rule, Crossing Closure and Grade Separation, Warning Device Upgrades, and Traffic Signal Preemption). The research team used two metrics to determine each factor's contribution to incident reduction. The percent impact is the percentage of incidents, from 1994 to 2003, that can be attributed to behaviors that the factor was attempting to change. The percent reduction is the percentage of incidents reduced, from 1994 to 2003, that can be attributed to pursue seven of the eight quantitatively analyzed factors in the next phase. The eighth, Traffic Signal Preemption, did not reflect a strong influence on reducing highway-rail grade crossing incidents.

The quantitative analysis in the second phase of this study was based on data available from the Railroad Accident Incident Reporting System–Highway-Rail Grade Crossing (RAIRS Grade Crossing) database. Because the data fields from the database were used to categorize the incidents by success factor, one incident could be assigned to more than one factor. This resulted in an overestimation of the factor effects and an overlap of incidents among factors. Phase III of the study focused on isolating the effects of each success factor, where possible, and analyzing the factors that were labeled difficult or very difficult to analyze in Phase I.

The factor isolation was applied to five of the seven remaining factors that were analyzed in Phase II (Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Sight Lines Clearance, and Grade Crossing Maintenance Rule). Each incident was assigned to a single factor, some combination or interaction of factors, or a category of other factors. The other factors category included the identified factors that were not able to be isolated. The percent impact and percent reduction were recalculated to more accurately reflect the influence that each factor had on the reduction in incidents. The cumulative percent impact was 55 percent, and the cumulative percent reduction was 80 percent.

Factor	Percent Impact	Percent Reduction
Commercial Driver Safety	21.8%	34.6%
Locomotive Conspicuity	15.0%	13.6%
Sight Lines Clearance	2.6%	3.6%
Grade Crossing Maintenance Rule	1.1%	3.1%
More Reliable Motor Vehicles	1.9%	3.1%
Combined Interactions	12.8%	21.9%
Other Factors	44.7%	20.0%

Table 1: Final Percent Impact and Percent Reduction

The two factors from phase II that could not be isolated were Crossing Closure and Grade Separation and Warning Device Upgrades. The team tested for correlation between the number of closed, separated, and upgraded crossings and the number of incidents. The test revealed a positive correlation, indicating that closing, separating, or upgrading crossings affected the frequency of incidents.

Two of the factors identified in Phase I were rated very difficult to analyze. The researchers collected little data on Operation Lifesaver and the Section 130 Program. Both are broad reaching programs that encompass the effects of the other identified success factors. However, related studies and reports have been published, and these served as the basis for a qualitative analysis of these two factors. The qualitative analysis unveiled positive impacts from both factors on incident reduction.

Data mining efforts during the course of the study revealed an additional potential success factor. Railroad mergers appeared to have an impact on safety along the rail lines. As major mergers occurred in the mid-1990s, railroad operations expanded, but the number of incidents dropped dramatically. This indicated some safety benefit or efficiency of operation as a result of the merger activity.

The analyses conducted in this study identified ten success factors in highway-rail grade crossing incident reduction. These 10 factors can account for the majority of the reduction in incidents. The 10 success factors are:

- Commercial Driver Safety
- Locomotive Conspicuity
- More Reliable Motor Vehicles
- Sight Lines Clearance
- Grade Crossing Maintenance Rule
- Crossing Closure and Grade Separation

- Warning Device Upgrades
- Operation Lifesaver
- The Section 130 Program
- Railroad Mergers

Of the factors that were quantitatively analyzed, Commercial Driver Safety and Locomotive Conspicuity were responsible for the largest reductions in incidents from 1994 to 2003.

1.0 Introduction

1.1 Background

In 1994, the USDOT's *Rail-Highway Crossing Safety Action Plan* [1] set a goal to reduce incidents and fatalities nationwide by at least 50 percent over 10 years. From 1994 to 2003, incidents between trains and highway-users at highway-rail grade crossings were reduced by 41.2 percent, from 4,979 to 2,924. Fatalities during the same time period were reduced by 48 percent, from 617 to 324. The varied efforts to improve safety yielded positive results. During the April 2003 meeting of the National Academy of Sciences Transportation Research Board's Committee for Review of the FRA's Research and Development Program, the Committee requested that the FRA review the incident statistics for the Action Plan time period (1994 – 2003) and identify the salient success factors for the reduction in those incidents. Success factors are the safety initiatives that were the most successful in reducing incidents at highway-rail grade crossings during the years 1994 through 2003.

FRA tasked the Volpe Center to determine which success factors had the greatest influence on highway-rail grade crossing safety during the period 1994-2003. It is important to know what factors yielded the greatest reduction in grade crossing incidents. This enables future initiatives to be planned to maximize safety.

1.2 Research Methodology

The approach to this problem involved three phases of analysis. Phase I was a qualitative screening of information. In this phase, brainstorming, literature reviews and data mining were used to develop a comprehensive list of potential success factors. The projected impact of the factors on incident reduction was used to identify the major contributors to incident reduction.

Phase II was an analysis of the top success factors. This phase was a preliminary analysis of the incident data. The team used two metrics to determine the benefit of each success factor. The percent impact is the percentage of incidents, from 1994 to 2003, that can be attributed to behaviors that the factor was attempting to change. The percent reduction is the percentage of incidents reduced, from 1994 to 2003, that can be attributed to the safety countermeasures for a factor. The percentages were used to determine which success factors should be further analyzed. The database used for this analysis may have attributed grade crossing incidents to multiple factors. This overlap of incidents may have resulted in inflated impact and reduction percentages for the factors. Isolating the factors was the focus of Phase III.

Phase III involved addressing the overestimation of the factors' effects by isolating each factor and the interactions among factors. It was important to assign each incident, from 1994 to 2003, to one of the three following categories: a single factor, a combination of factors, or no identified factor. This method validated that the factors found were indeed success factors for incident reduction. The percent impact and percent reduction were

refined to more accurately reflect the effect of selected factors on incident reduction. The limitations of the data necessitated that other factors be analyzed using other methods. For some of the factors that required a different methodology, a measure of correlation between the factor and the reduction in incidents was performed. Other factors could only be analyzed qualitatively.

1.3 Summary of Results

The results of each project phase fed into the analyses conducted in subsequent phases. At the end of Phase I, the projected impact on incident reduction filtered out the ten most likely success factors. Eight were analyzed quantitatively in Phase II: Commercial Driver Safety, Locomotive Conspicuity, More Reliable Motor Vehicles, Sight Lines Clearance, Grade Crossing Maintenance Rule, Crossing Closure and Grade Separation, Warning Device Upgrades, and Traffic Signal Preemption. Two were analyzed qualitatively in Phase III: Operation Lifesaver and the Section 130 Program. Additional research revealed another potential success factor, Railroad Mergers.

Table 2 lists the percent impact and percent reduction of the eight factors analyzed in Phase II are listed in Table 2. Two numbers are associated with Commercial Driver Safety and the Grade Crossing Maintenance Rule because database changes occurred in 1997 that affected the analyses of these factors. On the basis of these numbers, Traffic Signal Preemption was not pursued in Phase III.

Factor	% Impact	% Reduction
Commercial Driver Safety	30.04/26.25	52.99/51.75
Crossing Closure and Grade	4.73	16.22
Separation		
Grade Crossing	2.23/3.41	3.07/13.92
Maintenance Rule		
Locomotive Conspicuity	24.7	30.3
More Reliable Motor	7.54	11.19
Vehicles		
Sight Lines Clearance	5.13	8.81
Traffic Signal Preemption	1.82	0
Warning Device Upgrades	3.01	8.25

Table 2. Phase II Percent Impact and Percent Reduction

In Phase III, the effects of five success factors were isolated. The other five factors were unable to be isolated and were analyzed separately. These analyses indicated that they also contributed to the reduction in incidents. The five factors that were analyzed separately were Crossing Closure and Grade Separation, Warning Device Upgrades, Operation Lifesaver, the Section 130 Program, and Railroad Mergers.

The five isolated factors were attributed a percent impact and reduction. The Pareto charts, shown below in Figure 1 and Figure 2, illustrate the results. The key is found in Table 3. The five factors and the interactions between them impacted 54 percent of the incidents from 1994-2003. Nearly 80 percent of the reduction in incidents, from 1994-2003, can be attributed to the five selected factors or interaction of those factors.

Factor Type	Description*	
Α	Unidentified Factors	
В	Commercial Driver Safety	
С	Locomotive Conspicuity	
D	Sight Lines Clearance	
E	Grade Crossing Maintenance Rule	
F	More Reliable Motor Vehicles	
G	Combined Interactions	

 Table 3: Factor Key for Pareto Charts

*Detailed description of factors available in the section on Phase I

Figure 1: Pareto Chart of Factors Involved in Incidents (Percent Impact)

Figure 2: Pareto Chart of Factors that Contributed to a Reduction of Incidents (Percent Reduction)

1.4 Similar Research

A study on a similar topic area was conducted by Mok and Savage entitled "Why Has Safety Improved at Highway-Rail Grade Crossings?" [2]. The Mok and Savage study identifies and investigates possible factors that are influential in the reduction of incidents and fatalities at grade crossings. The focus of the study was the reduction in grade crossing incidents and fatalities from 1975 to 2001. The methodology used was a negative binomial regression. The greatest influence on safety was attributed to highway safety improvements such as drunk driving, enforcement, and improved emergency

response. Other influential factors identified in the study were warning device upgrades, Operation Lifesaver, locomotive alerting lights and crossing closure.

The FRA research described in this report attempts to answer the same question of what is responsible for the reduction in grade crossing incidents. The FRA research study period was from 1994 to 2003. This is the period covered by the 1994 *Rail-Highway Crossing Safety Action Plan* [1]. By 1994, many of the major highway safety improvements had been realized and did not continue to yield the same safety benefits. From 1994 to 2003, many rules and safety initiatives specific to rail and grade crossing safety were enacted. In the FRA study, only incidents were examined. The decision to use incidents as the metric for safety is described in Section 3.3.

Similar to the Mok and Savage study, the FRA study conducted background literature reviews and research on grade crossing safety. The factors considered in both studies were Warning Device Upgrades, Operation Lifesaver, Locomotive Conspicuity and Crossing Closure. The main difference between the two studies is the FRA research does not attempt to develop a regression model for incidents. It makes the assumption that certain factors can be approximated by data fields in the RAIRS Grade Crossing database. The data fields were examined for reductions in incidents and those reductions were attributed to a particular factor. For example, for the factor Commercial Driver Safety, incidents from the data field "type of vehicle" were analyzed from 1994 to 2003. Factors that were more complex and could potentially encompass the effects of other identified factors that were analyzed qualitatively.

The results of the Mok and Savage study differed from the FRA study. The regression model approach derived weighted coefficients for each factor. The coefficients attributed a portion of the reduction in incidents to the factors. The FRA study examined each factor individually and tried to isolate each factor's effects. Although the methodologies and results differed, both studies identified Warning Device Upgrades, Operation Lifesaver, Locomotive Conspicuity and Crossing Closure as success factors.

2.0 Research Approach

2.1 Databases

The researchers identified six databases as resources for the analyses of grade crossing incidents from the paper, "Documenting the Strength and Weakness of Databases for Use in Analyzing Highway-Railroad Grade Crossings" [3]. These databases are as follows:

- National Highway-Rail Crossing Inventory (Crossing Inventory)
- Highway-Railroad Crossing Inventory Geographical Information System (GIS) Layer
- RAIRS Grade Crossing
- RAIRS Rail Equipment
- Fatal Accident Reporting System (FARS)
- National Automotive Sampling System General Estimate System

Of the six databases identified, the team only used two in the analyses of grade crossing incidents for this project: the Crossing Inventory and the RAIRS Grade Crossing databases. These two were selected because others were limited in the data available for grade crossing incidents or they did not contain complete data for the 10-year study period.

FRA developed the Crossing Inventory database in 1970 and the FRA Office of Safety manages the database. It contains all U.S. public and private highway-rail grade crossings, with detailed current and historical information on individual crossings. The railroad submits the crossing data and the States submit the highway information voluntarily. Crossing data should be submitted if a crossing is closed, opened, or the level of protection is changed. However, changes are voluntary, which could lead to outdated or incomplete data, as noted in the paper, "Grade Crossings of Northeastern Illinois: An Analysis of the FRA Grade Crossing and Grade Crossing Accident Inventories, and an Analysis of the Potential Impacts from the Horn Sounding Requirement of the Swift Rail Development Act" [4].

FRA developed the RAIRS Grade Crossing database in 1975 and the FRA Office of Safety manages the database. It contains all incidents involving a highway user and railroad equipment. Information on the train involved is available, as well as detailed information on crossing characteristics. Unlike the RAIRS Rail Equipment database, no dollar threshold exists for the reporting of an incident. The railroad reports all incidents that involve railroad on-track equipment and highway users of public and private highway-rail grade crossings to FRA. A copy of the current FRA Highway-Rail Grade Crossing Accident Incident Report Form is available in Appendix A.

2.2 Changes in Database Structures

The Crossing Inventory database underwent changes in the 10-year study period. The most notable change occurred in 1997 when the database was expanded to be Y2K

compliant. A narrative field was added to the database, and additional information was collected on whistle bans and passenger trains. In addition in 2000, the category, fourquadrant gate warning devices, was added to the warning device field.

FRA added new fields and modified some of the existing fields in the RAIRS Grade Crossing database. Two new fields, driver gender and whistle ban, were added in 1997. The modified data fields that may have affected the analyses are type of vehicles, position, railroad equipment, type of equipment, and signal. All modifications to the above-mentioned fields were undertaken in 1997. Pickup truck, van, and other motor vehicles were added to the type of vehicle field; trapped was added to the position field; commuter train, single train, cut of cars, and maintenance/inspection equipment were added to the type of equipment field; alleged and confirmed warning signal greater than 60 seconds, less than 20 seconds, and confirmed no warning signal were added to the signal field.

2.3 Analytic Tools Used

The researchers used two different data mining tools, Accident Data Analytical Prospective Tool (ADAPT_X) Version 3.6 and SAS, Version 8.02, in the analyses of grade crossing incident data. They both utilized the same database, the RAIRS Grade Crossing database, but used different techniques to query the incident data.

Kenny Williams, formerly of the Structures and Dynamics Division of the Volpe Center, developed ADAPT_X. It is a front-end Microsoft Excel program that uses raw data extracted from the RAIRS Grade Crossing database. The data is filtered using selected criteria. The advantages of using this tool are that it is user friendly and it accounts for the multiple entries of a single incident in the database. Multiple entries may occur when two railroads are involved in the same incident, and both file reports with FRA. Instead of only one incident being listed, two incidents are recorded. In these cases, the integrity of the data is compromised.

SAS is a statistical software tool designed for data access, transformation, and reporting. It includes ready-to-use programs for data manipulation, information storage and retrieval, descriptive statistics, and report writing. The advantage of using SAS is that it comes with ready-to-use statistical programs that provide extensive statistical capabilities.

Both analytic tools were used and produced similar results. The number of incidents generated by SAS was slightly higher than the number of incidents generated by ADAPT_X. The team expected this result because ADAPT_X eliminates the multiple entries of a single incident. Because ADAPT_X is more reliable and easier to use, it was decided that ADAPT_X would be the primary tool for the analyses of grade crossing incidents.

3.0 Phase I

When the Transportation Research Board (TRB) Oversight Committee posed the question, "Why was there an incident reduction from 1994 to 2003?," no prior research had been conducted in this area. During this period, multiple safety countermeasures, laws, and programs could have affected driver behavior at highway-rail grade crossings. Societal changes and technological evolution could also have been influential. It was a multifaceted real world problem that needed a creative solution.

3.1 Exposure

The first approach was to examine the exposure levels at highway-rail grade crossings during the study period. This was to ensure that exposure levels were not the reason for the reduction in highway-rail grade crossing incidents. An ideal way to measure exposure at grade crossings would be to take the product of the average annual daily traffic (AADT) and trains per day for each crossing. The AADT and trains per day in the Crossing Inventory, however, are not updated every year and are therefore not reliable. Instead, the overall national vehicle miles traveled (VMT), train miles traveled (TMT), and number of crossings was used to calculate an exposure index for each year. Table 4 shows VMT, TMT, number of crossings, exposure index, overall number of incidents, and incident index for the years 1994 through 2003. The exposure index is equal to the normalized product of VMT, TMT, and the number of crossings. The incident index is equal to the overall number of incidents divided by the exposure index.

			Exposure Index	_	_	-
	Vehicles	Train Miles	Number of	Exposure	Overall	Incident
	Miles	Traveled	Crossings	Index	Number of	Index
	Traveled	(Millions)	-		Incidents	
	(Millions)					
1994	2,359,984	655.1	272724	4.2164	4979	1180.9
1995	2,422,775	669.8	268454	4.3564	4633	1098.8
1996	2,482,202	670.9	265695	4.4246	4257	1009.6
1997	2,552,233	676.7	262268	4.5296	3863	916.2
1998	2,628,148	682.9	259240	4.6527	3508	832.0
1999	2,690,241	712.5	257565	4.9370	3489	827.5
2000	2,746,925	722.9	254288	5.0495	3502	830.6
2001	2,797,339	711.6	252491	5.0261	3237	767.7
2002	2,855,756	728.9	250243	5.2090	3077	729.8
2003	2,890,893	748.6	242734	5.2531	2924	556.6
Percent	+22.5%	+14.3%	-11.0%	+24.6%	-41.2%	-52.9%
Change						
Sources	FHWA, Office	Office of the	FRA Rail-			
	of Highway	Inspector	Highway Crossing			
	Policy	General (2004).	Inventory Bulletin			
	Information	Audit of the	(1994-1996) [7],			
	Highway	Highway -Rail	FRA Railroad			
	Statistics	Grade Crossing	Safety Statistics			
	(1994-2003) [5]	Safety Program,	Annual Report			
		[6]	(1997-2003) [8]			

Table 4: Exposure Index and Incident Index

3.2 Success Factor Identification

The research methodology for this project began with trying to identify all possible highway-rail grade crossing incident reduction success factors. The comprehensive list of success factors was derived from brainstorming and literature reviews. The team used their knowledge and experience in grade crossing research to discuss possible factors. Extensive research was conducted via the World Wide Web, published reports, State and Federal regulations, and other documentation. This helped identify any factors that were overlooked and refine the comprehensive list of potential success factors.

The next step in this phase was to select the most probable success factors. The comprehensive list was organized in a matrix (see Appendix B) that contained various pieces of information necessary to make the selection. The team reviewed the data sources available for each factor, the methods of analysis, the projected impact on incident reduction, and the perceived difficulty of analysis. The projected impact was based on a scale of low, medium, or high. The factors with a high projected impact were believed to have affected incident reduction from 1994 to 2003. The perceived difficulty of analysis was based on a scale of easy, medium, and very difficult. The factors that had a high projected impact and were easy or medium to analyze were selected for quantitative analysis in Phase II. The researchers used the Crossing Inventory database and the RAIRS Grade Crossing database for this quantitative analysis. Other factors with a high projected impact and a difficult or very difficult level of analysis were evaluated differently.

The team selected 10 success factors for further analysis in Phase II. The following lists a description of each, in no particular order. The matrix in Appendix B includes descriptions of all possible success factors. Operation Lifesaver and the Federal Highway Administration's (FHWA) Section 130 Program will be analyzed qualitatively because a thorough analysis would require an intensive data collection process that is beyond the scope of this study. The other eight factors will be analyzed quantitatively.

Commercial Driver Safety. During the period 1994-2003, a greater emphasis was put on commercial driver safety. The Motor Carrier Safety Improvement Act established the Federal Motor Carrier Safety Administration (FMCSA) and emphasized commercial vehicle safety. The primary mission of FMCSA is to reduce crashes, injuries, and fatalities involving large trucks and buses. In October 1999, the law on Commercial Driver Disqualification (Title 69 Code of Federal Regulations (CFR) 48104) stated that commercial drivers convicted of violating the highway-rail grade crossing warning devices would have their Commercial Drivers' Licenses (CDL) suspended. This factor relates to the commercial vehicle involvement field within the RAIRS Grade Crossing database.

Locomotive Conspicuity. Making locomotives more conspicuous aids drivers in not only seeing an oncoming train, but judging its distance and speed. A final rule, Locomotive Safety Standards (49 CFR 229), published in March 1996,

effective December 1997, stated that all locomotives exceeding 20 mph over the crossing must have auxiliary alerting lights in addition to the headlight. This factor relates to the visibility, railroad equipment, and type of accident fields within the RAIRS Grade Crossing database.

More Reliable Motor Vehicles. During the period of study, automobiles were improved to be safer and more reliable. A more reliable vehicle reduces the likelihood of breaking down or stalling on the tracks and subsequently being struck by an oncoming train. This factor relates to the stalled vehicle field within the RAIRS Grade Crossing database.

Sight Lines Clearance. The clearing of vegetation and removal of obstructions surrounding a grade crossing enables highway-users to observe the tracks and a possible oncoming train at farther distances from the crossing. Adequate sight distance allows highway-users to stop safely and the risk of collision with an unexpected train is reduced. This factor relates to the obstruction of track view field within the RAIRS Grade Crossing database.

Grade Crossing Maintenance Rule. In 1995, the Final Rule on Grade Crossing Signal System Safety (49 CFR 234) was issued. This rule stated that railroads must implement specific maintenance, inspection, and testing requirements for active crossing warning systems. The regular maintenance and inspection would reduce the risk of warning device malfunction. This factor relates to the active warning device malfunction fields within the RAIRS Grade Crossing database.

Crossing Closure and Grade Separation. Crossing closures may have impacted the safety of highway-rail grade crossings over the Action Plan period (1994 to 2003). In 1991, the FRA Administrator recommended closure for 25 percent of all crossings. Closures and grade separations reduce the risk of a collision to nearly zero because the vehicle and train paths no longer intercept at that location. This factor relates to the update reason and type and position fields in the Crossing Inventory database.

Warning Device Upgrades. When crossing warning devices are upgraded to devices with a higher effectiveness value, the risk of a collision at the crossing is reduced. This factor relates to the upgrade reason and warning device code fields from the Crossing Inventory database.

Traffic Signal Preemption. Traffic signal preemption is recommended for highway-rail crossings equipped with active warning devices and with a signalized highway intersection within 200 feet. The normal sequence of traffic control signal indication at a nearby highway intersection is preempted upon the approach of trains. The goal is to avoid entrapment of vehicles on the highway-rail crossing by conflicting highway traffic control signals and the highway-rail grade crossing active warning devices. The factor relates to the traffic light interconnection/preemption field in the Crossing Inventory database.

Operation Lifesaver. Operation Lifesaver is an education and awareness program dedicated to ending tragic collisions, fatalities, and injuries at highway-rail grade crossings and on railroad rights of way.

Section 130 Program. Highway funds are appropriated by Congress under Section 130, Title 23 of the United States Code for improvements to the safety of highway-rail grade crossings. The funds are appropriated by State and each State has its own crossing improvement plan. The Section 130 Program overlaps with other success factors since this money is used to close, separate, and upgrade crossings.

3.3 Metric Selection

Before conducting quantitative analyses on the selected factors, the team chose the appropriate metric to measure the improvement in crossing safety. In this study, incidents were found to be the appropriate metric. Figure 3 shows a graph of the injury per incident rate and fatality per incident rate for each year of study. From 1994 to 2003, the rates remained constant even though incident rates were decreasing. The proportion of injury-incidents and fatality-incidents stayed the same over the course of the study. Incidents, injuries, and fatalities were all declining at the same rate. The reduction in incidents did not vary by incident severity.

Figure 3: Incident-Injury and Incident-Fatality Rates

4.0 Phase II

Operation Lifesaver and the Section 130 Program were not analyzed quantitatively because a thorough analysis would require an intensive data collection process and these two factors may encompass other factors. Phase II includes a discussion of a qualitative analysis.

4.1 Quantitative Analysis

The research team quantitatively analyzed eight success factors. Detailed analysis is available in Appendix C. The objective was to rank their effectiveness based on two metrics, percent impact and percent reduction. The percent impact is the percentage of incidents, from 1994 to 2003, that can be attributed to behaviors that the factor was attempting to change. The percent reduction is the percentage of incidents reduced, from 1994 to 2003, that can be attributed to the safety countermeasures for a factor. For a few factors, the team concluded additional quantitative analysis on available data. These analyses supported the percent impact and percent reduction results. The following analyzes eight factors. Table 5 summarizes the percent impact and percent reduction results are included at the end of this section.

4.1.1 Commercial Driver Safety

Percent Impact 30.04/26.25, Percent Reduction 52.99/51.75

For the analyses of commercial driver safety, the researchers used incidents from vehicles requiring a CDL (trucks, truck-trailers, buses, and school buses), as identified by the type of vehicles field in the RAIRS Grade Crossing database, to calculate the percent impact and the percent reduction. Two percentages are provided for each percent impact and reduction, because in 1997 two categories, pick-up truck and van, were added to the type of vehicle field. These types of vehicles may have been included in either the truck or auto category pre-1997. The number of incidents was 1784 in the year 1994, 1182 in the year 1997, and 695 in the year 2003.

Commercial Driver Safety has high values for percent impact and percent reduction. It was of interest to further examine the success of this factor. One approach was to compare the proportion of VMT between commercial and non-commercial vehicles over the 10-year period and determine any effect on the number of incidents.

Figure 4 shows the percent of VMT and the number of incidents for commercial and noncommercial vehicles. The figure below shows that over the 10-year period, the proportion of commercial VMT stayed the same, around 8 percent. Commercial vehicle incidents, however, decreased from 1,784 in 1994 to 695 in 2003. Although commercial VMT make up about 8 percent of the overall VMT, they were involved in 35.8 percent of incidents in 1994 and 23.7 percent of incidents in 2003.

Figure 4. Percent of VMT and Number of Incidents for Commercial versus Non-Commercial Vehicles

The research team also compared the rates of incidents for commercial vehicles, noncommercial vehicles and all vehicles. Commercial vehicle and non-commercial vehicle incident rates start in 1997 because before this year the categories pickup truck and van did not exist. Figure 5 shows the incident rate per one billion VMT for commercial, noncommercial, and all motor vehicles. Commercial vehicles have the highest rate of incidents per VMT but they also have the largest reduction. The incident rate for commercial vehicles decreased by 47.6 percent, from 5.96 in 1997 to 3.12 in 2003. This is compared to a 29.2 percent decrease in the non-commercial vehicle incident rate.

Examining the amount of commercial vehicle traffic on the roads from 1994 through 2003 revealed that commercial vehicles were involved in a larger percentage of incidents than non-commercial vehicles. The incident rate decrease, however, was more dramatic for commercial vehicles than non-commercial vehicles. The results from these analyses suggest that Commercial Driver Safety did have a significant impact on the reduction in highway-rail crossing incidents.

Figure 5. Incident Rate per Billion VMT for Commercial, Non-Commercial, and All Motor Vehicles

The reduction in commercial vehicle incidents at grade crossings is of interest because an incident involving a commercial vehicle may have serious consequences. Although commercial vehicle incidents decreased significantly over the 10-year period, they accounted for 23.7 percent of all incidents in 2003. The commercial vehicle incidents

have higher rates of injuries and fatalities to train occupants than non-commercial vehicle incidents. Truck, truck-trailer, and automobile incidents comprise about 83 percent of all incidents in the study period. (See Appendix D.) The team used automobile, truck, and truck-trailer injuries and fatalities obtained from the RAIRS Grade Crossing database to compare the severity of incidents involving commercial and non-commercial vehicles. (Appendix E provides an analysis of severity.) Figure 6 shows the severity to train occupants in terms of injuries, from incidents involving automobiles, trucks, and trucktrailers.

Figure 6. Incident Severity to the Train Occupant from Automobile, Truck, or Truck-Trailer

As expected, Figure 6 shows that the incidents involving commercial vehicles have greater consequences to train occupants than regular automobiles. The reports, *Post-Incident Aggravating Risk Factors in Highway-Rail Grade Crossing Crashes* [9] and *Assessment of Risks for High-Speed Rail Grade Crossings on the Empire Corridor* [10], assert that incidents involving commercial vehicles have a greater chance of derailing a train. A derailment is a greater danger to train occupants. The spike that occurred in 1999 resulted from a severe accident and subsequent derailment in Bourbonnais, IL. An Amtrak train struck a tractor-trailer and derailed, killing 11 passengers on board.

4.1.2 Locomotive Conspicuity

Percent 24.7, Percent Reduction 30.3

The FRA published the report, *Use of Auxiliary External Alerting Devices to Improve Locomotive Conspicuity* [11], in 1995. It stated that there was a significant difference in the effectiveness of locomotive alerting lights between the daylight and the night. The lights provided more benefit in the night. Therefore, incidents in which the rail equipment struck the highway user at dusk, dawn or dark, from the RAIRS Grade Crossing database, were used to measure the effects of increased Locomotive Conspicuity. Visibility, railroad equipment, and type of accident fields were chosen as representatives of this factor. The number of incidents decreased from 1320 in 1994 to 696 in 2003.

Figure 7 shows a graph of the proportion of incidents where rail equipment struck the highway user by time of day. The proportion of incidents over the study period increased for incidents at day and decreased for incidents at dark, dawn or dusk. The decrease in proportion of incidents at dark or dusk indicates that safety is improving during the night. This lends credit to using the selected data fields for the analysis of Locomotive Conspicuity.

Figure 7: Proportion of Incidents by Time of Day

4.1.3 Grade Crossing Maintenance Rule

Percent Impact 2.23/3.41, Percent Reduction 3.07/13.92

The researchers decided that warning signal malfunctions would be classified into three categories: excessive warning time, abbreviated warning time, or no warning. The signal field in the RAIRS Grade Crossing database identifies incidents that have both alleged and confirmed warning device malfunction. There are two percentages for percent impact and reduction, one from 1994 to 2003 and another from 1997 to 2003. In 1997, five new categories were added to the signal data field. The percent impact was determined from the percentages of the total number of incidents that identified a warning device malfunction in 2003 versus 1994, or 2003 versus 1997. The number of incidents with a warning device malfunction reduced from 204 in 1997 to 73 in 2003.

To further analyze the effectiveness of the Grade Crossing Maintenance Rule, the researchers used a number of activation failures was used to determine the rate at which active warning devices fail. Figure 8 shows the activation failure rate. Activation failures from 1992 and 1993 were obtained from the report, *Highway-Railroad Grade Crossing Active Signal Systems Analysis* [12]. The researchers obtained activation failure data from the years 1998 and 1999 electronically from FRA and the years 2000 through 2003 were obtained from the FRA Activation Failure records. The FRA was not collecting activation failure data during the years 1994 through 1997, hence, the gap in the data. The activation failure rate is equal to the number of activation failures times 100 divided by the total number of active crossings in the Nation. The activation failure rate sharply declined after the maintenance rule was implemented. This suggests a safer crossing environment after the rule. (See Appendix F for more detailed data.)

Figure 8: Activation Failure

4.1.4 Crossing Closure and Grade Separation

Percent Impact 4.73, Percent Reduction 16.22

When a crossing is closed or grade separated, the risk of a collision between a highway user and a train is minimal. Because no further incidents at those crossings are likely to occur, it is difficult to derive the effect of crossing closures and grade separations on incident reduction between 1994 and 2003. No fields in the RAIRS Grade Crossing database could be used for the analyses of Crossing Closure and Grade Separation. A new methodology was developed to estimate the impact of closures and grade separations on the decrease in incidents over the 10-year period. From 1984 to the year a crossing was closed or separated, the accident history was used to obtain an average number of incidents. The probable number of incidents for a particular year was the number of incidents that would have occurred in that year if the crossings closed or separated between 1994 and that year had not been closed or separated. The following formulas determined the percent impact and the percent reduction:

- (1) Percent Impact = (the sum of probable incidents between 1994 and 2003)/(the sum of the actual and probable incidents between 1994 and 2003) x 100.
- (2) Percent Reduction = (the change in the probable number of incidents between 1994 and 2003)/(the change in the sum of the actual and probable incidents between 1994 and 2003) x 100.

4.1.5 Warning Device Upgrades

Percent Impact 3.01, Percent Reduction 8.25

Warning Device Upgrades posed a similar problem as Crossing Closure and Grade Separation. No fields in the RAIRS Grade Crossing database could be used for the analysis of Warning Device Upgrades. The method developed for Crossing Closure and Grade Separation was modified to evaluate the effectiveness of Warning Device Upgrades. All Warning Device Upgrades were categorized into one of three different types: passive to flashing lights, passive to gates or flashing lights to gates. Each type of upgrade has an effectiveness value associated with it. The effectiveness values were obtained from the 1987 *Rail-Highway Crossing Resource Allocation Procedure–A User's Guide, Third Edition* [13].

- Passive to Flashing Lights = 0.70
- Passive to Gates = 0.83
- Flashing Lights to Gates = 0.69

The data for Warning Device Upgrades was based on available data from the State of Illinois and then extrapolated to obtain national data. For each year from 1994 to 2003, an accident rate for each type of warning device was developed. The accident rate was equal to the number of incidents at a crossing with a particular warning device divided by the total number of crossings with that warning device. The probable number of incidents for a particular year was the number of incidents that would have occurred in that year if those crossings upgraded between 1994 and that year had not been upgraded. The percent impact and percent reduction formulas were the same as used for Crossing Closure and Grade Separation.

4.1.6 More Reliable Motor Vehicles

Percent Impact 7.54, Percent Reduction 11.19

The position field in the RAIRS Grade Crossing database identifies incidents where the highway vehicle was stalled on the tracks at the time of impact. The percent impact for More Reliable Motor Vehicles was determined from the percentage of incidents from 1994 to 2003, in which the highway vehicle was stalled on the crossing. A vehicle can stall for a variety of reasons, not all of which are related to the reliability of the motor vehicle. Therefore, the effect of this factor may be over inflated because there RAIRS Grade Crossing database does not provide additional information on the cause of the stall. In the ten years of the study period, 2,824 incidents out of the 37,471 total incidents resulted from vehicles being stalled on the crossing. The percent reduction was determined by finding the number of fewer incidents attributed to stalled vehicles that occurred in 2003 versus 1994. The number of incidents that involved stalled vehicles dropped from 412 to 182.

4.1.7 Sight Lines Clearance

Percent Impact 5.13, Percent Reduction 8.81

The view field in the RAIRS Grade Crossing database describes seven categories of visual obstruction at the highway-rail grade crossing at the time of impact: permanent structure, standing railroad equipment, passing train, topography, vegetation, highway vehicles, and other. The researchers used all seven categories in the analysis except passing train and highway vehicles. These two were not included because it is difficult to eliminate them through safety countermeasures. The number of incidents decreased from 294 in 1994 to 113 in 2003.

4.1.8 Traffic Signal Preemption

Percent Impact 1.82, Percent Reduction 0.0

Limited data was available for this factor. Incidents at crossings with warning devices connected to highway traffic signals were queried from the RAIRS Grade Crossing database. The number of crossings with traffic signal preemption was available from the Crossing Inventory database, but it was not possible to distinguish the number of crossings equipped with traffic signal preemption by year. Therefore, the effectiveness of traffic signal preemption could not be analyzed sufficiently. Another approach was taken involving the position of the highway vehicle during an incident at a crossing equipped with traffic signal preemption. The position of interest was trapped. A vehicle could become trapped on a grade crossing by stopped traffic due to a red traffic signal ahead. Traffic signal preemption could reduce the risk of traffic queuing onto a crossing. However, no data was available to determine the reason the vehicle became trapped. Since the number of preempted crossings makes up less than 2 percent of overall crossings, and the percentage of incidents at preempted crossings did not change over the 10-year period, it was decided not to further pursue this factor.

4.2 Summary of Results

Table 5 summarizes the eight success factors with their percent impact and reduction. Where two percents are shown in the same cell, the first percent is based on the time span 1994 to 2003. The second percent is based on the time span 1997 to 2003. These factors were affected by changes in the database structure in 1997. Appendix F includes detailed data and analysis of each factor.

The team used the analysis of factors by percent impact and percent reduction to select the top factors for further study. Factors with the percent impact and the percent reduction below 8 percent were not pursued. Traffic Signal Preemption was the only factor not pursued. The RAIRS Grade Crossing database analysis may have attributed grade crossing incidents to multiple factors. This overlap of incidents may have resulted in inflated impact and reduction percentages for the factors. The research team conducted factor isolation in Phase III.

Factor	% Impact	% Poduction
Factor	70 IIIpaci	70 Reduction
Commercial Driver Safety	30.04/26.25	52.99/51.75
Crossing Closure and Grade	4.73	16.22
Separation		
Grade Crossing	2.23/3.41	3.07/13.92
Maintenance Rule		
Locomotive Conspicuity	24.7	30.3
More Reliable Motor	7.54	11.19
Vehicles		
Sight Lines Clearance	5.13	8.81
Traffic Signal Preemption	1.82	0
Warning Device Upgrades	3.01	8.25

Table 5. Phase II Percent Impact and Percent Reduction

5.0 Phase III

5.1 Isolating Success Factors

In Phase II, concern was that the method of data analysis resulted in an overestimation of the effect of the success factors analyzed. This was due to multiple counting of incidents and overlaps of incidents among factors. This situation arose because data fields from the highway-rail crossing accident reports are used to categorize the incidents by success factor and these reports could cite more than one factor per incident. For example, an accident report could cite a commercial vehicle involved, the vehicle stalled on the tracks, and an obstruction blocked the sight line. This would mean that this incident would be attributed to all three of the following factors: Commercial Driver Safety, More Reliable Motor Vehicles, and Sight Lines Clearance. In reality, either one factor alone or some combination of the three factors was responsible for the incident. Thus, Phase III began by trying to isolate the effect of each success factor. It was necessary to find a methodology that would take one incident and assign it to a particular success factor, a combination of two or more success factors, or a single category of all other factors.

The researchers used inferential extrapolation was used in Phase II to determine how many incidents were impacted and reduced from the two success factors: Crossing Closure and Grade Separation and Warning Device Upgrades. Because this number of incidents was an estimate and could not be obtained directly from the RAIRS Grade Crossing database, these two success factors and their interactions were unable to be isolated. The Section 130 Program and Operation Lifesaver were two success factors that could also not be isolated because they encompassed too many other factors. Additional research conducted in Phase III revealed a potential success factor in Railroad Mergers. Railroad Mergers data was not obtained directly from the RAIRS Grade Crossing database and therefore could not be isolated. The remaining five success factors and their combined interactions could be isolated because the number of incidents assigned to these success factors came from the RAIRS Grade Crossing database. These five success factors were Commercial Driver Safety, Locomotive Conspicuity, Sight Lines Clearance, Grade Crossing Maintenance Rule, and More Reliable Motor Vehicles.

To imagine how they were isolated, the team used a Venn diagram of five factors. The Venn diagram showed the five factors and every intersection (or overlap) possible between them. Incidents could then be isolated to one factor or some intersection of factors. To better understand this concept, an example shown with three factors will be described next.

Imagine three factors exist: A, B, and C. Initially, A includes incidents that intersect with B, incidents that intersect with C, and incidents that intersect with B and C. The goal is to find the number of incidents, A', that does not include these intersections. It is also desired to find the number of incidents for the intersection of A and B (A \cap B), as well as A and C (A \cap C), that does not include the intersection of A, B, and C (A \cap B \cap C). The same process applies to factors B and C. These new values, which represent the isolated factors and their interactions, will be labeled: A', B', C', A' \cap B', A' \cap C', B' \cap C', and $A' \cap B' \cap C'$. ($A' \cap B'$ equals $B' \cap A'$ and the same goes for the other intersections.) Figure 9 shows a Venn diagram of A, B, and C. A, B, and C are the circles in their entirety, including all intersections. Figure 10 shows the Venn diagram with the isolated factors and their isolated interactions. This means that A' would be the number of incidents that can be attributed only to Factor A and no intersection with the other factors. Table 6 shows the equations to solve for A', B', C', and their isolated interactions.

Figure 9. Venn Diagram of Factors A,B,C (pre-isolation)

Figure 10. Venn Diagram of Isolated Factors and Isolated Interactions

Isolated Factor and Interactions
Factor A':
$A' \cap B' \cap C' = A \cap B \cap C$
$A' \cap B' = (A \cap B) - (A' \cap B' \cap C')$
$A' \cap C' = (A \cap C) - (A' \cap B' \cap C')$
$A' = A - [(A' \cap B') + (A' \cap C') + (A' \cap B' \cap C')]$
Factor B':
$A' \cap B' \cap C' = A \cap B \cap C$
$B' \cap A' = (B \cap A) - (A' \cap B' \cap C')$
$B' \cap C' = (B \cap C) - (A' \cap B' \cap C')$
$B' = B - [(B' \cap A') + (B' \cap C') + (A' \cap B \cap C')]$
Factor C':
$A' \cap B' \cap C' = A \cap B \cap C$
$C' \cap A' = (C \cap A) - (A' \cap B' \cap C')$
$C' \cap B' = (\overline{C \cap B}) - (A' \cap B' \cap C')$
$C' = C - [(C' \cap A') + (C' \cap B') + (A' \cap B' \cap C')]$

 Table 6. Equations for Isolated Factors and Their Isolated Interactions

The above methodology was performed on the five success factors mentioned above: Commercial Driver Safety, Locomotive Conspicuity, Sight Lines Clearance, Grade Crossing Maintenance Rule, and More Reliable Motor Vehicles. (See Appendix G to see a detailed breakdown of how these success factors were isolated.) The figure below graphs the number of incidents over the 10 years (1994-2003) that can be attributed to a particular isolated success factor. This is shown by the green dashed line and it is associated with the right vertical axis. The pink solid line shows the overall number of incidents nationwide over the 10 years. This line is associated with the left vertical axis.

5.1.9 Commercial Driver Safety

The first graph, Figure 11, shows incidents that can be attributed to Commercial Driver Safety for the years 1994 through 2003. In 1997, pickup trucks and vans received their own category on the accident/incident data forms (represented with a yellow triangle on the graph); in 1999, the Motor Carrier Safety Improvement Act was introduced (represented by an X on the graph). Nationally, incidents were reduced from 4,979 to 2,924, a reduction of approximately 2,000 incidents. The reduction for incidents that were attributed to commercial vehicles was 712 from 1,246 to 534. The reduction in commercial vehicle incidents for about a third of the national reduction. This factor follows the national trend or possibly influences it.

Figure 11. Incidents Attributed to Commercial Drivers for 1994-2003

5.1.10 Locomotive Conspicuity

Figure 12 shows incidents that can be attributed to Locomotive Conspicuity for the years 1994 through 2003. A final rule (49 CFR 229) published in March 1996, effective in December 1997, stated that all locomotives exceeding 20 mph over the crossing must have auxiliary alerting lights in addition to the headlight (this date is represented with a yellow triangle on the graph). Incidents attributed to Locomotive Conspicuity were reduced from 745 to 465 over the study period. Locomotive Conspicuity incidents mimic the national trend. The cause of the spike in incidents in 2000 is unidentified.

Figure 12. Incidents Attributed to Locomotive Conspicuity for 1994-2003

5.1.11 Sight Lines Clearance

Figure 13 shows incidents that can be attributed to Sight Lines Clearance for the years 1994 through 2003. During the study period, sight line obstructions at crossings and along the right of way drew increased attention. In 1995, FRA included a provision addressing the need to maintain rail rights-of-way adjacent to crossings free of sight obstructing vegetation in its "Notice of Proposed Rulemaking on Track Standards," and in 1998, the final rule on Track Safety Standards (49 CFR 213.37) stated that "vegetation...shall be controlled so that it does not obstruct visibility...at highway-rail crossings." The Technical Working Group report, *Guidance on Traffic Control Devices at Highway-Rail Grade Crossings* [14] contained guidance on appropriate sight distances at crossings and removing obstructions. In 1997, data fields on accident/incident reports were reconfigured. Incidents attributed to obstructed sight lines were reduced from 137 to 63. Although these numbers are small and some variability occurs, they still mimic the national trend.

Figure 13. Incidents Attributed to Sight Lines Clearance for 1994-2003
5.1.12 Grade Crossing Maintenance Rule

Figure 14 shows incidents that can be attributed to the Grade Crossing Maintenance Rule for the years 1994 through 2003. In 1995, the Final Rule on Grade Crossing Signal Systems Safety was issued (this is represented by a yellow triangle on the graph). This rule states that railroads must implement specific maintenance, inspection, and warning testing requirements for active crossing systems. The graph shows a peak in 1997 because in that year new categories were added to the signal field in the RAIRS Grade Crossing database. Before 1997, detailed data was not collected for this field. Incidents related to warning device failures were reduced from 116 (in 1997) to 52. The largest decline occurred from 1997 to 2000. After 2000, the reduction leveled off. The benefits of this factor could have been maximized by the year 2000.

Figure 14. Incidents Attributed to the Grade Crossing Maintenance Rule for 1994-2003

5.1.13 More Reliable Motor Vehicles

Figure 15 shows incidents that can be attributed to More Reliable Motor Vehicles for the years 1994 through 2003. In 1997, a new category, trapped, was added to the position field on the accident/incident form. Incidents attributed to unreliable motor vehicles were reduced from 116 to 52. Similar to Sight Lines Clearance, the numbers are small but still mimic the national trend.

Figure 15. Incidents Attributed to More Reliable Motor Vehicles for 1994-2003

5.2 Final Percent Impact and Percent Reduction

To obtain the new impact and reduction percentages, the incidents were assigned to one of seven categories: the five isolated success factors, a combined interaction of two or more of the five isolated success factors, and a seventh category labeled unidentified factors. The other factors category contained all other incidents that were not assigned to an isolated success factor or some combined interaction of isolated success factors.

Once the success factors were isolated, the team used the same method as in Phase II to find new percent impacts and percent reductions for the five isolated factors and their combined interactions. The numbers were a more realistic representation of the effects of each factor. This method validated that the factors identified were indeed success factors for incident reduction. Table 7 shows these new percent impacts and percent reductions for the five isolated success factors, combined interactions, and unidentified factors. The numbers in this table are based on incidents nationwide from 1994 to 2003.

Factor	Percent Impact	Percent Reduction
Commercial Driver Safety	21.8%	34.6%
Locomotive Conspicuity	15.0%	13.6%
Sight Lines Clearance	2.6%	3.6%
Grade Crossing Maintenance Rule	1.1%	3.1%
More Reliable Motor Vehicles	1.9%	3.1%
Combined Interactions	12.8%	21.9%
Other Factors	44.7%	20.0%

Pareto diagrams were found to be an effective tool to display the new results. The Pareto principle states that the majority of wealth is held by a disproportionately small segment of the population. This principle applies to quality improvement. Out of all possible problems, only some occur frequently [15]. For the success factors problem, this translates to mean that a small number of success factors are responsible for the majority of the incident reduction from 1994 to 2003. The five factors and the interactions between them impacted 55 percent of the incidents during these ten years. And, 80 percent of the reduction in incidents, from 1994 to 2003, can be attributed to the five selected factors or the interaction of those factors. (See Table 8, Figure 16, and **Error! Reference source not found.**.) The two isolated factors with the largest effects on incident reduction were Commercial Driver Safety and Locomotive Conspicuity.

Table 8.	Factor	Key	for	Pareto	Charts
----------	--------	-----	-----	--------	--------

Factor Type	Description
А	Unidentified factors
В	Commercial Driver Safety
С	Locomotive Conspicuity
D	Sight Lines Clearance
E	Grade Crossing Maintenance Rule
F	More Reliable Motor Vehicles
G	Combined interactions

Figure 16. Pareto Chart of Factors Involved in Incidents (Percent Impact)

Figure 17. Pareto Chart of Factors that Contributed to a Reduction of Incidents

5.3 Kendall Partial Rank Correlation Coefficient

When analyzing the factors by percent impact and percent reduction, it was not possible to isolate the following two success factors: Crossing Closure and Grade Separation and Warning Device Upgrades. A different methodology was needed to analyze the effects of these two factors. The correlation between each of these two factors and the number of incidents for each year between 1994 and 2003 was examined. The Kendall Partial Rank Correlation Coefficient was used. It is a nonparametric method of partial correlation that ranks the data for each variable on an ordinal scale. This means that no assumptions about the distribution of the population need be made. It determines the correlation coefficient values can range from one to negative one. A correlation coefficient of one indicates that variables X and Y are positively correlated, a coefficient of zero indicates that no correlation exists, and a coefficient of negative one indicates that there is a negative correlation [16].

Table 9 and Table 10 show the Kendall Partial Rank Correlation Coefficient for Crossing Closure and Warning Device Upgrades for each year in the study. The complete Kendall Partial Rank Correlation Coefficient analysis, as well as more detail on the statistical method, is available in Appendix H and Appendix I.

5.3.14 Crossing Closure

Crossing closure and grade separation yield many of the same safety benefits. They eliminate the risk of an incident by preventing highway and rail traffic from intersecting. Because of the limited data available for grade separations and the small number constructed in the Nation, the analysis focused on crossing closures. For the analysis of Crossing Closure, variable X is the number of closed crossings, variable Y is the number of incidents reduced from one particular year to the next, and variable Z is the number of crossings in that year. The data was separated into the eight FRA regions (see Appendix H). For each year of study, the research team ranked the eight regions on the three variables. The rankings were used to obtain Kendall rank correlation coefficients for variables X and Y, Z and Y, and X and Z. With those values, the correlation coefficient of X and Y when Z is held constant was computed.

The Kendall Partial Rank Correlation Coefficients for crossing closures (see Table 9) indicate that the correlation between the number of crossings closed and the number of incidents reduced, is strong for some years and weak in others. The graph in Figure 17 shows that the correlation may be cyclical; however, the span of this study is too short to draw any conclusions. The closure activity may take years to complete and see the benefits. The type of crossings closed also would impact incident reduction. Closing abandoned crossings with little traffic would yield fewer safety benefits than closing a crossing with high exposure.

Year	$\tau_{xy,z}$
1994	0.16
1995	0.47
1996	-0.29
1997	0.09
1998	-0.45
1999	-0.02
2000	0.73
2001	0.32
2002	0.30
2003	0.00

Table 9. Kendall Partial Rank Correlation Coefficient for Crossing Closure

5.3.15 Warning Device Upgrades

For the analysis of Warning Device Upgrades, variable X is the number of crossing upgrades, variable Y is the number of incidents reduced from one particular year to the next, and variable Z is the number of crossings in that year. The data was separated into the eight FRA regions. For each year of study, the research team ranked the eight regions on the three variables. The rankings were used to obtain Kendall rank correlation coefficients for variables X and Y, Z and Y, and X and Z. With those values, the correlation coefficient of X and Y when Z is held constant was computed.

The Kendall Partial Rank Correlation Coefficients for warning device upgrades also appears to be cyclical. Some years have high correlation values while others are low. The factor isolation conducted in Phase III attributed some incidents to particular factors. These incidents were removed for this correlation analysis. It was assumed that the incident reduction that was not attributed to the five isolated factors could have been attributed to warning device upgrades. Because different types of upgrades (e.g. flashing lights to gates, or crossbucks to gates) exist, a proxy number was used for the total number of upgrades. It was determined by the summation of the number of each type of upgrade multiplied by the effectiveness value of that upgrade, as defined by the *Rail-Highway Crossing Resource Allocation Procedure* [13]. Correlation values were found, as shown in Table 10. Figure 18 graphs the values in Table 10, and a cyclical pattern can be seen. This indicates that the benefits of upgrading the crossing warning devices may take time to be realized, or delays could occur in entering the data into the inventory database.

Year	$\tau_{xy,z}$
1994	0.21
1995	0.42
1996	-0.17
1997	0.46
1998	0.17
1999	-0.28
2000	0.57
2001	0.18
2002	0.52
2003	0.09

Table 10. Kendall Partial Rank Correlation Coefficient for Warning Device Upgrades

Figure 18. Kendall Partial Rank Correlation Coefficients for Warning Device Upgrades

Although the results varied among years, the tests for correlation between crossing closures or warning device upgrades and the reduction in highway-rail grade crossing incidents suggest that these two factors do have effects on crossing safety. The reduction in incidents from 1994 through 2003 can be related to efforts to close and consolidate crossings and upgrade the crossing warning devices.

5.4 The Section 130 Program

The Section 130 Program is a Federal program under US Code Title 23, Section 130 that provides funds for highway-rail grade crossing safety improvements. Under the Section 130 Program, approximately \$220,000,000 is available to states annually. Over the last 15 years, \$3.8 billion has been obligated for grade crossing improvements. The crossing safety improvement programs are unique to each state. They can include signage, pavement markings, warning devices, illumination, crossing surface repairs, crossing closures, and grade separations. Because this program encompasses many options to improve crossing safety, it was difficult to isolate its effect on incident reduction. The researchers conducted a qualitative analysis that revealed that the Section 130 Program is beneficial to crossing safety. Table 11 lists literature relevant to the Section 130 Program.

Article	Author(s)	Date
Accidents That Shouldn't Happen; A Report of the Grade Crossing Safety Task force to Secretary Federico Pena	United States Department of Transportation	March 1996
U.S. Railroad Safety Statistics and Trends	P. French	January 2006

 Table 11: Literature Relevant to the Section 130 Program

Accidents That Shouldn't Happen; A Report of the Grade Crossing Safety Task Force to Secretary Federico Pena [17] states that FHWA estimates that since the inception of the Section 130 Program, 40,000 injuries have been prevented and 9,000 lives saved. A presentation provided by the Association of American Railroads in January 2006, U.S. Railroad Safety Statistics and Trends [18], stated that the installation of gates at a crossing reduced the accident and fatality rates by 93 percent. This statistic indicates that using the funds available from the Section 130 Program to upgrade crossing warning devices has a significant effect on crossing safety. The effects from this factor are conjoined with the effects from Crossing Closure and Grade Separation and Warning Device Upgrades.

5.5 Operation Lifesaver

Operation Lifesaver was also considered a possible success factor. However, proper evaluation of this program's impact would require time and labor intensive data collection. Therefore, the research team chose a qualitative literature review evaluation. Table 12 lists the four most relevant articles.

Article	Author(s)	Date
Does Public Education Improve Rail-	I. Savage	March 2005
Highway Crossing Safety?		
Evaluation of Transport Canada's	Departmental Evaluation	November
Contribution to Operation Lifesaver Final	Services Transport Canada	2003
Report		
Public Education and Enforcement	S. Sposato, P. Bien-Aime,	June 2006
Research Study – Draft Report	and M. Chaudhary	
Driver's Behavior at Railroad Grade	K.A. Brewer	March 1992
Crossings: Before and After Safety		
Campaign. Final Report		

 Table 12: Literature Relevant to Operation Lifesaver

In the paper, "Does Public Education Improve Rail-Highway Crossing Safety?" [19], negative binomial regression was used to determine a relationship between Operation Lifesaver and grade crossing incidents and fatalities. While no conclusion could be made about the impact of Operation Lifesaver on fatalities, it was determined that the level of Operation Lifesaver educational activity had a significant effect on the number of incidents. One of the reasons the analysis was done at the State level was because Operation Lifesaver activity is measured on a State level.

Transport Canada took a different approach in evaluating Operation Lifesaver in its November 2003 final report titled *Evaluation of Transport Canada's Contribution to Operation Lifesaver* [20]. Transport Canada looked at three data sources: file and document reviews; interviews of Transport Canada railway safety staff, Operation Lifesaver National Office staff, and Operation Lifesaver Stakeholders; and two case studies.

The report indicated that the Operation Lifesaver activity improved the safety behavior and awareness of its target audience. However, the positive results were not conclusive because of a lack of quantitative data. The case studies added additional anecdotal evidence. For example, the mock disaster showed that by improving the awareness about the logic of the events that lead to a grade crossing incident, people's willingness to change their behavior can be influenced.

The *Public Education and Enforcement Research Study (PEERS)* [21] dealt with the impact of education on violations of the grade crossing warning devices. Various types of public education were applied, including crossing safety blitzes and an increase in Operation Lifesaver presentations throughout the community. These activities resulted in the violation rates being reduced by 30.92 percent from the pre-test to the post-test period. In addition, the violation rate when a highway-user enters the grade crossing while warning flashers are active and the gates are fully deployed (horizontal position), showed a 71.4 percent decrease from the pre-test to the post-test period.

Driver's Behavior at Railroad Grade Crossings: Before and After Safety Campaign Final Report [22] covered a new implementation of Operation Lifesaver in Iowa. This study reviewed traffic characteristics at 22 grade crossings before and after the implementation of Operation Lifesaver. Two observations were made before and after the implementation of Operation Lifesaver and then compared. The results showed that Operation Lifesaver was effective in three ways. At low speed crossings, the driver's approach and crossing speeds were slowed. A lower percentage of drivers exceeded the speed limit while approaching the crossings. A higher percentage of drivers made sure the grade crossing was clear of trains before crossing over the tracks.

In summary, while none of the articles contain any strong quantitative data that document the success of Operation Lifesaver on a nationwide or even state level, ample qualitative data does seem to suggest Operation Lifesaver is successful in its mission.

5.6 Railroad Mergers-A Potential Success Factor

In addition to the success factors analyzed in Phases I and II, changes in the railroad industry operations and organization, through mergers and consolidations, could also have influenced the reduction in highway-rail incidents. The mergers and consolidations could have affected the reduction in incidents in any of the following ways: the railroads were operating more efficiently, the success factors were reinforced in the new more efficient culture, or unidentified independent factors arose from the mergers and consolidations.

The number and size of railroads during the 10-year study period, 1994 through 2003, changed. In 1994, there were 15 Class I railroads (as defined by the Surface Transportation Bureau) in the United States; in 2003, there were 9. This merging and consolidation likely resulted from a number of economic forces: modal competition, opportunities for economic efficiencies, changes in the manufacturing sector, and shifting traffic patterns. There could be a safety benefit to merging and an economy of scope or scale. These mergers may have reinforced the effects of the success factors (particularly factors within the railroad industry control, e.g., sight line improvements, crossing maintenance, warning device upgrades, crossing closures, and grade separations), as well as created new independent effects. To fully study this issue is a sizable undertaking; therefore, this study did not determine any independent effects.

In 1994, 23 railroads had 85 percent of the incidents when ranked in descending order of frequency; in 2003, 18 railroads had 85 percent of these incidents. (See Appendix J.) As mentioned, the number of Class I railroads in the United States decreased from 15 in 1994 to 9 by the end of the study period in 2003. (See Table 13.) Currently, Class I status is defined as operating revenues in excess of \$289.4 million. In 2004, Class I railroads operated 97,496 of the 140,806 miles (70 percent) of the U.S. railroad network [23].

Class I Railroads at Beginning of Study	Class I Railroads at End of Study
Period, 1994	Period, 2003
Amtrak (National Railroad Passenger	Amtrak (National Railroad Passenger
Corp.)	Corp.)
Atchison, Topeka & Santa Fe Railway	Burlington Northern and Santa Fe Railway
	Co.
Burlington Northern Railroad Co.	Canadian National/Grand Trunk Western
	Railroad Co.
Chicago and North Western Railway Co.	CSX Transportation, Inc.
Consolidated Rail Corp.	Kansas City Southern Railway Co.
CSX Transportation, Inc.	Norfolk Southern Combined Railroad
	Subs.
Denver & Rio Grande Western Railroad	Soo Line Railroad Co.
Grand Trunk Western Railroad Inc.	Union Pacific Railroad Co.
Illinois Central Railroad Co.	
Kansas City Southern Railway Co.	
Norfolk Southern Corp.	
Soo Line Railroad Co.	
Southern Pacific Transportation Co.	
St. Louis Southwestern Railway Co.	
Union Pacific Railroad Co.	

Table 13.	Class I	Railroads	at the	Begin	ning and	l End	of the	Study	Period
-----------	---------	-----------	--------	-------	----------	-------	--------	-------	--------

While mergers occurred among Class I and other railroads, some Class II and III railroads also merged and/or consolidated. Additionally, Class II and III railroads may respond competitively to Class I operating changes. However, because they operate only a small percentage of U.S. tracks, these mergers are not of much interest.

Highway-rail incidents declined 41.2 percent during the 10-year study period. Over the first 5 years of the study period, the rate of decline was 8.4 percent per year versus 4.4 percent for the final five years. (See Table 14.) In the first period, Union Pacific Railroad Co. (UP) merged with Southern Pacific Transportation Co. (SP) and Chicago Northwestern Railway Co. (CNW) in 1995; Burlington Northern Railroad Co. (BN) and Atchison Topeka Santa Fe Railway (ATSF) merged in 1996. Whether these mergers in any way impacted the incident decline, particularly during the first 5 years, would be of interest.

Year	Incidents	Percent Decline	5 Year Compound Rate of Decline
1994	4,979		
1995	4,633	-7.0%	
1996	4,257	-8.1%	8.4%
1997	3,865	-9.2%	
1998	3,508	-9.2%	
1999	3,489	-0.5%	
2000	3,502	0.4%	
2001	3,237	-7.6%	4.4%
2002	3,077	-4.9%	
2003	2,920	-5.1%	

 Table 14. Yearly Rates of Decline in Public and Private Crossing Incidents

Highway-rail incidents for UP and its merger partners, SP and CNW, declined yearly, with the exception of 1999 throughout the study period. The overall reduction, from 1,029 in 1994 to 427 in 2003, was 58.5 percent. (See Table 15.) UP acquired more track miles following the merger in 1995. As UP operations grew as a result of the merger, the incidents decreased. This suggests a safety benefit from railroad mergers that may not have previously been identified.

\mathbf{A}	Table 15.	Public	Crossing	Incidents Re	eported for	UP and	l Maior	Merger	Partners
--------------	-----------	--------	----------	---------------------	-------------	--------	---------	--------	----------

UP SP CNW	1994 591 246 192	1995 468 201 153	1996 583 202 0	1997 679	1998 590	1999 656	2000 602	2001 555	2002 479	2003 427
TOTAL	1029	822	785	679	590	656	602	555	479	427

Highway-rail incidents for the Burlington Northern and Santa Fe Railway Co. (BNSF) and two of its major merger partners, BN and ATSF, declined yearly with the exception of 1995, throughout the study period. (See Table 16.) The overall reduction from 625 in 1994 to 343 in 2003 was 45.1 percent. A large incident reduction (20.8 percent) occurred in 1996 and again in 1998 (14.0 percent), bracketing the time of the merger. The trend in incidents involving BNSF after the merger suggests a relationship between consolidation and incident declines.

	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
BNSF	0	0	243	537	462	446	437	410	408	343
BN	453	474	192	0	0	0	0	0	0	0
ATSF	172	193	93	0	0	0	0	0	0	0
TOTAL	625	667	528	537	462	446	437	410	408	343
Change		6.7%	-20.8%	1.7%	-14.0%	-3.5%	-2.0%	-6.2%	-0.5%	-15.9%

 Table 16. Public Crossing Incidents Reported for BNSF and Major Merger

 Partners

5.7 Summary of Results

The five success factors that were isolated in Phase III accounted for nearly 80 percent of the reduction in incidents from 1994 to 2003. These five factors are Commercial Driver Safety, Locomotive Conspicuity, Grade Crossing Maintenance Rule, Sight Lines Clearance, and More Reliable Motor Vehicles. Figure 19 shows the number of grade crossing incidents by year. The columns are divided into incidents that identified one of the five success factors as a cause and those where the cause was unknown. The incidents attributed to a success factor see a dramatic decline over the decade, whereas the other incidents remain constant. This indicates that the success factors that were instrumental in the reduction of incidents from 1994 to 2003 have been identified.

Figure 19. Highway-Rail Grade Crossing Incidents 1994-2003

The two factors, Crossing Closure and Grade Separation and Warning Device Upgrades, were analyzed using the Kendall Partial Rank Correlation Coefficient. This analysis showed positive correlations between the factors and the reduction in incidents. This supports the belief that these two factors contributed to incident decline. The researchers performed qualitative analysis on the two factors, the Section 130 Program and Operation Lifesaver. Previously conducted research suggests these factors are success factors. Additional analysis during the course of this project revealed a potential 10th success factor, Railroad Mergers.

6.0 Findings

6.1 Lessons Learned

Before an analysis can be conducted, it is important to determine which data to use, how to obtain that data, and how to maintain the integrity of that data. In this study, FRA databases were chosen as the data sources. Data mining tools were then needed to extract the data from the databases. ADAPT_X and SAS were chosen as two data mining tools. However, when the incident data generated from ADAPT_X and SAS were compared, the results showed that SAS produced a slightly higher number of incidents. The comparison of the two data sets revealed that in the SAS set, some incidents were counted multiple times. This may occur when more than one railroad is involved in an incident and each railroad files a report with FRA. Instead of only one incident record, two incidents are recorded. Because of the multiple counting generated by SAS, ADAPT_X was chosen as the primary data mining tool. The multiple entries of a single incident in the RAIRS Grade Crossing database could affect results, and measures should be taken to remedy these inconsistencies.

When the data fields from the highway-rail crossing accident/incident reports are used to categorize the incidents by success factor, some incidents are counted multiple times. The overlap of incidents between factors results in an overestimation of the factor's effect. It is important to recognize this, as well as to isolate the factors and any interaction between them. This yields more realistic numbers and a more accurate representation of each factor's effect on incident reduction.

In this study, the researchers examined data from multiple years; therefore, it was important to be aware of database changes over time. Some modifications were the result of the following: changes in definitions and codes used within the database, new fields and categories being added to the database, and new lawmaking rules and regulations. The Crossing Inventory database is divided into a current and a historical section. It is necessary to be aware that changes will be made in the current section of the database without updating the historical section. In addition, it was difficult to discern when a particular change was made to the database. Because the Crossing Inventory is split between the historical and current data, it is important to realize that changes made to one set of data would not necessarily be made to the other.

During the course of the analysis, it became apparent that not enough data fields are collected to determine the effects of all the identified success factors. A limited number of fields are in the accident reports and the grade crossing inventory. Creative and qualitative methods were necessary to examine the effects of some factors. The quantitative methods attributed some portion of the reduction in incidents to the success factors. The qualitative analysis does not rely on mathematical validity, but instead on expert conjecture and prior studies. Some safety programs, such as Operation Lifesaver and the Section 130 Program, encompassed multiple factors. This made it difficult to identify the impact and reduction on incidents due to these safety programs. The differences in analytical methods made it difficult to compare the effects of all factors and presented challenges in determining the top success factors.

The success factors were analyzed using two metrics. These two metrics, percent impact and percent reduction, provided a more accurate picture of the effects of the factors. A factor that reduced a large percentage of incidents could only be considered a top success factor if it impacted a large percentage of the incidents from 1994-2003. For example, a factor that reduced incidents by 50 percent, but only impacted 1 percent of incidents would not be a success factor. But a factor that reduced incidents by 25 percent and impacted 30 percent of incidents would. It was important to consider both metrics when determining the success factors.

A Pareto diagram is a tool that is useful to quickly identify critical areas. In this analysis, the critical areas were those factors that were responsible for the largest reduction in incidents from 1994 to 2003. Pareto diagrams arrange factors in order of importance. In this analysis, the factors were arranged by the number of incidents impacted and the number of incidents reduced. The Pareto diagrams for this project provided evidence that the major success factors in incident reduction, from 1994 to 2003, were responsible for nearly 80 percent of the reduction during this period.

In addition to the sources explicitly referenced in this paper, general knowledge and understanding were obtained from a variety of sources. These papers, reports, and legislative documents offered guidance and insight as the analysis moved forward. Appendix K lists additional sources.

6.2 Recommendations for Next Steps

Proceeding with the following next steps could enhance the results of this analysis. They could provide a better understanding of grade crossing success factors.

6.2.1 Case Studies

Case studies can help validate the results and understand complexities by taking a micro approach. Some regions and States have more pronounced declines. The States and regions selected to study should be larger entities because generally less variation occurs in counts among years. A comparison case study could be conducted between a State with a large reduction in incidents due to a particular success factor and a State without a significant reduction. Another case study approach would be to focus on the incident data and crossing improvement programs for a particular State. The availability of better data could produce a more thorough analysis. Some of the States, like Illinois, collect more detailed grade crossing data than is available from the FRA.

Two potential States for case studies are Florida and Texas. *Rail-Highway Crossing Safety— Fatal Crash and Demographic Descriptors* [25] identified Texas as the State most representative of the Nation as a whole. Florida had a large number of incidents during the study period. Unlike other States with a large number of incidents, the number of crossings was relatively unchanged and the number of gated crossings only increased slightly. This disparity makes it an interesting case study. Examination of the highwayrail grade crossing incident data by FRA region is another possible case study. Variation in incident rates was detected among regions. Regions 4, 5, and 6 showed stronger declines in incidents during the study period (see Appendix J).

The number and size of railroads during the study period changed. A safety benefit to merging may exist. A full study on the effects of railroad mergers would be a large endeavor. A case study of a large railroad State may provide a manageable beginning. Two potential States are Texas or California, where mergers and operational consolidation occurred during the study period. Incidents at public crossings in California declined from 183 in 1994 to 120 in 2003 (see Appendix J). UP and BNSF, two railroads with substantial merger activity during the study period, operate in California. Incidents at public crossings in Texas declined from 502 in 1994 to 258 in 2003 (see Appendix J). The number of railroads reporting incidents also declined (30 to 16). Two major railroad consolidations involving BNSF and UP occurred. These case studies would help reveal the effects of railroad mergers on incidents.

6.2.2 Data Analysis

Collection of additional data may improve understanding of future trends in highway-rail grade crossing incidents. The goal in any additional data collection is to remove the need to make assumptions about incidents. Some areas of data collection that could be improved are: mandatory updates to the data files for current information, more driver behavior data fields, more consistent guidelines for filling out the accident/incident reports and better record keeping for database changes. Information value should be weighed against stakeholder collection costs.

It is important to look at the likelihood that each success factor will continue to provide a reduction in grade crossing incidents. Diminishing returns is a concern because after a certain point, additional spending in a given area will yield fewer benefits than it did in the past. For example, Locomotive Conspicuity had the largest reduction in incidents in the years immediately following the implementation of the alerting lights regulation. Afterwards, the benefit of this safety measure was constant. No expectation exists that another large benefit will be realized from this safety measure because all locomotives are already equipped with alerting lights. However, a safety measure such as Crossing Closure and Grade Separation may continue to yield benefits at the same rate. Every time a crossing is closed or grade separated, an impact on grade crossing incidents occurs. Crossings still need to be closed or grade separated. Diminishing returns are something to consider when investigating the success factors of the next decade.

Analyzing data from grade crossing fatalities could reveal the success factors that would help reduce the most severe incidents. Safety initiatives that save human lives provide invaluable benefits. Two sources of grade crossing fatality data are the RAIRS Grade Crossing database and the FARS database. The FARS database collects more fields than the RAIRS Grade Crossing database, which could be helpful when looking for root causes. Identifying the factors that reduce the most severe incidents can help maximize the benefits of implementing safety countermeasures. For each of the factors identified in this paper, further analysis should be conducted on the incident data for 2004, 2005, and 2006. The methodology should be similar to the one used in this study. The same data sources and methods of extracting the data from the sources should be used for consistency. The goal of the analysis is to see if the trends identified in this study continue. One benefit of this analysis would be additional validation of the conclusions of this study. It would also help predict where additional safety benefits can be gained in the coming years.

6.2.3 Future Success Factors

Future analysis could explore the impact of enforcement to help reduce grade crossing incidents. Enforcement is an increasingly popular low cost option to enhance safety at highway-rail grade crossings. Research is already being conducted that indicates that enforcement has the potential to decrease grade crossing incidents. Different types of enforcement include photo enforcement or the physical presence of law enforcement at the crossing.

Driver behavior is usually the cause of grade crossing incidents. The Office of the Inspector General report attributed 94 percent of highway-rail grade crossing incidents and 87 percent of fatalities to "risky driver behavior or poor judgment" [6]. For example, an incident can occur when a motorist decides to violate the crossing warning devices and drive around the gates. Enforcement activity can influence drivers to behave safely. *The Use of Photo Enforcement at Highway-Rail Grade Crossings in the U.S. July 2000—July 2001* [24] looked at the use of photo enforcement at six locations. The result was a reduction of violations at all locations. *Public Education and Enforcement Research Study* [21] looked at the effect of law enforcement blitzes (i.e., when a police officer issues a citation to violators of the crossing warning devices). The violation rates were lower on days when law enforcement was present. This indicates that highway-user behavior was changed for the safer during the law enforcement blitzes. Enforcement is a safety tool that was not widely used from 1994 to 2003, but could be a success factor in incident reduction in future decades.

On November 28, 2005, FRA enacted a new rule with the intent to reduce the number of highway-rail grade crossing incidents. The rule, Reflectorization of Rail Freight Rolling Stock (49 CFR 224), states that retro-reflective sheeting shall be applied to every railcar and locomotive. Retro-reflectivity improves train visibility at night or during other low visibility situations. This rule impacts safety at highway-rail grade crossings after the 10-year period studied in this report. It is a potential success factor for future decades.

Another rule that potentially impacts crossing safety after 2003 was the locomotive horn rule. The locomotive horn helps highway users avoid grade crossing incidents. However, communities who are frequently subjected to this train horn may feel that the level of noise the horn creates is affecting their quality of life. On June 24, 2005, FRA's Final Rule on the Use of Locomotive Horns at Highway-Rail Grade Crossings (49 CFR 222-229) went into effect. This new rule requires that train horns be sounded at all highway-rail grade crossings in the United States. It also allows localities to establish areas where locomotive horns are not sounded, provided that alternative safety measures are implemented to eliminate any increase in risk. The changes implemented by this rule will influence highway-rail grade crossing safety. This is a potential success factor in the next decade.

In addition to the mergers and consolidations, other railroad-industry specific factors (e.g., traffic type or commodity mix) might have an effect on incident reduction and its variation among States and FRA regions. Shipments of major commodity groups (e.g., grain, coal, forest products) vary among years. This variation may differentially impact regions. In addition to the overall downward decline in incidents, a railroad activity cycle may be superimposed on the trend. Historically, the decline has occurred as an oscillating process, possibly influenced by fluctuations in railroad business activity.

7.0 Conclusions

At the conclusion of this analysis, 10 factors were identified as successful highway-rail grade crossing safety initiatives and programs. Five factors were isolated and analyzed based on numeric data, and the other five were analyzed inferentially and qualitatively. The five factors that were isolated are:

- Commercial Driver Safety
- Locomotive Conspicuity
- Sight Lines Clearance
- Grade Crossing Maintenance Rule
- More Reliable Motor Vehicles.

These factors were analyzed using data from the RAIRS Grade Crossing database. These five factors impacted 55 percent of the incidents during the ten years. And 80 percent of the reduction in incidents, from 1994-2003, can be attributed to these five selected factors or the interaction of these factors. The two factors with the greatest success in reducing incidents were Commercial Driver Safety (34.6 percent) and Locomotive Conspicuity (13.6 percent).

The other five factors that were analyzed alternatively are:

- Crossing Closure and Grade Separation
- Warning Device Upgrades
- Operation Lifesaver
- Section 130 Program
- Railroad Mergers

The team examined Crossing Closure and Grade Separation and Warning Device Upgrades in Phase II of this study. The analysis used a probable number of incidents to determine the percent impact and percent reduction. These factors were unable to be isolated in Phase III. Therefore, a measure of correlation was used to establish a relationship between the factor and the reduction in incidents. Although a percent impact and reduction could not be isolated, the data did show a positive correlation.

Operation Lifesaver and the Section 130 Program were multifaceted programs and addressed safety in a variety of ways. Because of their broad reaching nature, a solid quantitative analysis was difficult. There was not data collected that could be associated with many aspects of these programs. Therefore, a qualitative analysis was undertaken, revealing positive results. Although this analysis did not involve numerical data, it indicated that Operation Lifesaver and the Section 130 Program contributed to safer behavior at highway-rail grade crossings. Funds from the Section 130 Program can be used to close, separate, or upgrade crossings. Therefore, the effects of Crossing Closure and Grade Separation and Warning Device Upgrades also reflect on the effectiveness of the Section 130 Program.

Investigation into alternative methodologies for analysis yielded supporting evidence of the nine success factors and another potential success factor. Railroad Mergers show evidence of dramatic incident reductions, even though the railroads grew in size and their operations expanded. Mergers and consolidation could have reinforced the other success factors identified in this paper, or it could have created independent effects.

The analysis conducted during this study revealed 10 factors that can account for the majority of the reduction in grade crossing incidents from 1994 to 2003.

Appendix A. FRA Accident/Incident Report

DEPARTMENT OF TRA	NSPORTAT	ION	H	IIGHWA ACCID	Y-RAIL (ENT/INC	GRADE CROS	SING			CMD Arrow	ed No.: 2130-051
1. Name of Reporting Railroad						la. Alphabetic	Code		15. R	silrend Accident/Incident	No.
2. Name of Other Railroad Involve	d in Train Accide	nt/incident				2a. Alphabetic	Code		2b. R	silrend Accident/Incident	No.
3. Name of Railroad Responsible t	for Track Mainten	ance (ring)	e entry)			Ja. Alplabetic	Code		3b. R	silrend Accident/Incident	No.
4. U. S. DOT Goals Crossing Man	tification Number	r				5. Date of Acc	ident (Incident)		6. Tir	e of Accident/Incident	
						manth	day	year		AM	PM
7. Negost Railroad Station			8. D	Mision			9. County			10. Stat Abb	a Coda
11. City (g'in a city)						12. Highway Nana	or Number			Public	Prinaia
	Highway U	isse hrvolvad						Rai Equi	enent involve	nd .	
13. Type C. Track-trailer A. Anio D. Pick-up track B. Track E. Van	F. Bus G. School I H. Metorey	J. Sea K. Sela M	Other motors Pedestrian Other (spec	valuicie 1057	Code	 Equipment Train (cette p Train (cette p Train (cette p 	ulingi s unhingi s nd	 Car(s) (noving Car(s) (atombie Light loce(s),6 Light loce(s) (s) 	j i 19 A noving) I Noving) (I. Other (apen)(5) . Train pulling- RCL I. Train publing- RCL . Train sizeding- RCL	Code
14. Vehicle Speed (int. reph.at impact)	15. Direc	tion (grogra	phica)		Code	18. Position of Carl	Unit in Train			C. THE STREET, POST	
16. Position	L Ne	an 2 5000	3.546 4.1	woll	Code	19. Circumstance			1.111	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Code
 Stalled on crossing 2. Step 20a. Was the history user motion 	ped on crossing	3. Mosting of	ver crossing	4. Trapped	Cade	1. Rail equipment	ri strack highs	ray user 2. Ra	il oquipment e	track by highway user	Contr
in the impact incorporting has 1. Highway user 2. Rail e	uzdosa matorials? priprosat 3.	Both	. Neither			1. Highway ta	er 2. Rodi	equipment	3.Both	6. Neither	
20c. State have the mane and quar	tity of the hazards	se natidal o	desced, if any	L.							
 Temperature (specify (feelews) F 	22. Visibilit 1. Dawa	ty (single est	zý Duak 4.Dad	Ł	Code	23. Weather pickale 1. Clear 2. Cli	entry) ondy 3. Rodo	4.Feg 5.5	iloet 6.5m	*	Code
24. Type of Equipment 1. Fough Consist 2. Passes (single entry) 3. Const	tinsin 4.Wo gertasin 5.Sin stortasin 6.Co	aktrain 7.1 glocar 8.1 tofoars 9.1	Yarðiswitchin Light Inco(s). Maint Anspect	g A.Spec.M	oW Equip. Code	 Track Type Use Equipment Invo 1. Main 2. Yan 	d by Rail hved d 3. Siding 4	Industry	Code	26. Track Number or)	firms.
27. FRA Toack Class (1-9, X)	28. Number o Locomoti	of ive Units	25	of Can	30. C R B	onsist Speed Acce - Recorded ∛av - Estimated	rded speed, celabie) 3	Code	31. Ti 1. 2.	me Table Direction North 3. East South 4. West	Code
32. Type of 1. Gates Crossing 2. Cartilever Fi Warning 3. Standard FL3	4. Wig wa 5 5. Hwy. to 6. And bla	ga d'Ac signais	7. Crossbo 5. Stop sig 9. Watchin	da 10. Fla as 11. Of an 12. No	gged by craw hat (sport)(s) es	33. Signaled (See reve leathact)	Cronding Was rate side for our and codes)	ning	Code	34. Whistle Ban 1. Yes 2. No	Code
Code(s)										3. Unknown	
 Location of Watting Both rides Side of vehicle approach Opposite side of vehicle app 	reach		a 35.	Covering Warns with Highway 5 I. Yes 2. No 3. Universit	ng Interconnect lignals	96	Code	1. Yes 2. No 3. Unknow	Efformation of the Special Light	y 51046. 8	Coa
38. Driver's 39. Driver's Gende Age 1. Male	r Code	40. Driver I and Stri	Derve Behind ick or was Siz	er in Front of T task by Second 1	Irain Train	Code	41. Driver 1. Drove	around or thru	Che gate	4. Stopped on crossing 5. Other countries	Code
2. Female 42. Driver Deced Structure		1. Yes	2.No	3. Unk	atown	re chaine they)	3. Did a	ot stop		1. com (Assid)	
Highway Vehicle 1. Yes 2. No 3. Unknow		coa	1. Part 2. Star	nment stracture sting milroad er	ingener i	3. Paesing than 4. Topography		5. Vegetation 6. Highway ve	tticles	7. Other (specify) 8. Not obstructed	
Case and time to:	Kille	đ	ы	und	44. Defaue w 1. Killed	ras 2. Injured - 3. Uninju	eed bea	Code 45. 1	Was Deixse in I. Yes	the Vehicle? 2. No	Code
45. Highway-Rail Crossing Uson					47. Highway (est. dollar	Vehicle Property Dan in-dewage)	inge	48. 1	fotal Number (Include deter	of Highway-Rail Coostin er)	g Uners
49. Railcond Employees					50. Total Nu (Dechair	mber of People on Tra passengers and train	in armej	51. 1	n a Rail Equip Incident Repo	pment Accident/ et Being Filed?	Code
52. Passengers on Train					1			1	l. Yes	2. No	
53a. Special Study Block						53b. Special Study I	llock				_
54. Namitro Description (de spo	cife, and continu	n en uperak	sheet if neces	ueŋ)							
55. Typed Name and Title				56. Signatur	16					57. Date	
NOTE: This report is par or used for any p See 49 C.F.R. 22	t of the report arpose in any 5.7 (b).	ing railroa suit or act	d's accide tion for da	ut report pu mages grow	revant to the	e accident report my matter mentio	statute an med in said	d, as such sl i report	aall not " b " 49 U.S.C	e admitted as evide C. 20903.	ince.

FORM FRA F 6180.57 (Revised Much 2003)

* NOTE THAT ALL CASUALTIES MUST BE REPORTED ON FORM FRA F 6160.55A

Appendix B. Comprehensive List of Success Factors

Table Key

- Description–Text description of the item
- Evaluation Method–Description in text of how to evaluate the factor
- Data Needs–Description of the ideal data needed to evaluate the factor
- Interviews-'Y' = interviews would be a good data source, 'N' = it would not be helpful.
- Data Analysis–'Y' = data analysis would be a good data source, 'N' = it would not be helpful.
- Literature Review-'Y' = literature review would be a good data source, 'N' = it would not be helpful.
- Projected Impact-'L' = Low Impact; 'M' = Medium Impact; 'H' = High Impact
- Difficulty to Evaluate-'E' = Easy to evaluate; 'M' = Medium Difficulty to evaluate; 'V' = Very Difficult to Evaluate

<u>Crossing</u> Safety	Description	<u>Evaluation</u> Method	<u>Data</u> Needs	Interview s	<u>Data</u> Analysis	<u>Literature</u> Review	Projected Impact	<u>Difficulty to</u> Evaluate
Improvement				-	<u> </u>			
Items								
Highway Traffic Signal Interconnection and Preemption	Traffic signal preemption is recommended for crossings with a highway-highway intersection within 200 feet. The normal sequence of traffic control signal indication is preempted upon the approach of trains to avoid entrapment of vehicles on the highway-rail crossing by conflicting aspects of the traffic control signals and the highway-rail grade crossing active warning devices.	Look at "before and after" incident rates at crossings that have traffic signal preemption at nearby intersections. And conduct a trend analysis versus overall incident reduction. Look at incidents where the motor vehicle was trapped	Identify crossing with preemption and the date it was installed Identify crossings that are within 200 yards of a traffic signaled	Ν	Y	Ν	L	М
		in the grade crossing by highway traffic	intersection					
Motor Carrier Safety Improvement and Commercial Driver Disqualification	During the period 1994-2003, a greater emphasis was put on commercial driver safety. The Motor Carrier Safety Improvement Act established the Federal Motor Carrier Safety Administration and emphasized truck safety. In October of 1999, a law stated that commercial drivers convicted of violating the grade crossing warning devices would lose their CDL.	Review the Act for details on crossing safety. Evaluate by commercial driver incidents/time for the 10 years 1994-2003. Find number of commercial drivers who lost their CDL as a result of the law.	Annual truck traffic Grade crossing incidents involving commercial vehicles	N	Y	N	Η	Е
Crossing Improvement Programs/Section 130 Funding	Highway funds are appropriated by Congress under Section 130, Title 23 of the United States Code for improvements to the safety of highway-rail grade crossings. The funds are appropriated by state and each state has its own crossing improvement plan.	Investigate the programs and funding of States that have had the greatest improvements in crossing safety. Rank States by amount spent on crossing safety and then rank states by number of incidents.	Grade crossing incident data by State Crossing improvement plans Levels of funding for CIP	Y	Y	Ν	Μ	Μ

		and number of crossings. Try to see if any pattern between amount spent and number of incidents.						
Locomotive Conspicuity	Making locomotives more conspicuous aids drivers in not only seeing an oncoming train, but judging its distance and speed. A final rule published in March 1996, effective in December 1997, stated that all locomotives exceeding 20 mph over the crossing must have auxiliary alerting lights in addition to the headlight.	Review literature on evaluations done in the mid-1990s. Look for decrease in incidents at night or passive crossings where locomotive is less visible.	Incident data Dates when lights were installed on locomotives	N	Y	Y	М	М
Urbanization	The migration of the public from rural areas of the Nation to more urban areas. Urban centers have fewer grade crossings, especially passive protective crossings.	Compare the number and types of urban and rural crossings. Look at the exposure rates at crossings. Use GIS.	Census data Incident data	N	Y	N	М	М
More Reliable Motor Vehicles	During the period of study, automobiles were improved to be safer and more reliable. A more reliable vehicle reduces the likelihood of breaking down or stalling on the tracks and subsequently being hit by an oncoming train.	Look for decrease in stalled cars on the tracks that led to incidents.	Incident data Automobile reliability ratings	N	Y	N	М	М
Grade Separation	The creation of an over/underpass at highway- rail grade crossings. Grade separations reduce the risk of a collision to zero because the vehicle and train paths no longer at that location.	Look at incident rates specifically in areas with a lot of separated crossings. Analyze the relationship between separated crossings and incidents.	Incident data Identify the separated crossings	N	Y	Y	Н	М
Crossing Closure	Crossing closures may have impacted the safety of highway-rail grade crossings over the Action Plan period (1994 to 2003), In 1991, the	Look at incident rates specifically in areas with a lot of crossing closures.	Incident data Identify the closed crossings	N	Y	Y	Н	М

	FRA Administrator	Analyze the						
	recommended closing 25% of	relationship between						
	all crossings.	closed crossings and						
	Closures reduce the risk of a	incidents.						
	collision to almost zero							
	because the vehicle and train	Consider what types						
	paths no longer intercent at	of crossings are						
	that location	being closed e.g. Are						
	that location.	they closing the						
		highest risk crossing?						
		On redundant unused						
		Or redundant unused						
		crossings?	T 1 1 1 1		37			
Upgrade of	Physical warning devices at	Look at upgraded	Incident data	N	Y	Y	М	М
Warning Devices	the crossings are upgraded for	crossings incident						
	safety.	rates.	Records of					
	When crossing warning		crossing					
	devices are upgraded to	Analyze incident data	upgrades					
	devices with a higher	by type of warning						
	effectiveness value, the risk	device.						
	of a collision at the crossing							
	is reduced.	Review literature on						
		the effectiveness of						
		warning devices.						
Grade Crossing	In 1995, the Final Rule on	Look at incident data	Incident	N	Y	N	H/L	M/V
Maintenance Rule	Grade Crossing Signal	before and after the	data					
And Constant	System Safety was issued	rule to see if a						
Warning Time	This rule stated that railroads	reduction in incidents	Database					
training Thile	must implement specific	occurred due to	cause					
	maintenance inspection and	warning device	codes					
	testing requirements for	malfunction	codes					
	active crossing warning	manufiction						
	systems	Look for a significant						
	The regular maintenance	decrease in incidents						
	and increation would reduce	with long or short						
	the wish of marries device							
	the fisk of warning device	warning times						
	mailunction.	Denier I iterations and						
		Review Literature on						
		driver impatience,						
		faulty gate						
		activations		-				
Sight Lines	The clearing of vegetation	Review literature on	Incident data	N	Y	Y	L	V
	and removal of obstructions	sight line visibility						
	surrounding a grade crossing	and driver behavior						
	enables highway-users to	at crossings.						
	observe an oncoming train							
	from greater distances from	Look at incidents that						
	the crossing.	occurred because the						
	Highway-users have a better	driver was not aware						
	chance to stop safely and the	of the crossing and/or						
	risk of being surprised by a	train.						

train is reduced.				

Driver Behavior	The majority of incidents at highway-rail grade crossings are caused by driver error. The change in behaviors over time could result in fewer grade crossing incidents.	Review the compendium reference list on driver behavior at grade crossings. Conduct a data analysis of the incident data to identify causal factors and changes in driver behavior characteristics (time series over 10 years).	Incident data Driver behavior literature	Ν	Y	Y	М	M/V
Changes in Crossings Characteristics	Physical changes in the characteristics of a crossing could result in a safer environment.	Do a time series analysis of crossing characteristics to identify changes in the incident rates over 10 years.	Incident data Records of crossing upgrades Literature on effectiveness of warning devices	Ν	Y	Y	М	М
Accident Reporting	A rule on accident reporting mandated in 1996 required the railroads to report incidents Changes in the accident reporting requirements result in different data being collected. It also holds the railroads accountable for incidents and encourages a safety culture.	Identify the changes in reporting.	Reporting errors Rule changes	?	?	?	L	?
On Board Train Technology	Improved communications between locomotive and wayside computers alert the engineer to potential dangers at upcoming crossings.	Identify technology available and when it was implemented.	List of technologies available and implementation records	Y	Y	Y	L	V
Training & Manuals for Locomotive Engineers	New manuals and training for locomotive engineers have increased safety as a priority.	Create survey questions for locomotive engineers. Investigate what is included in the manuals/training.	Railroad Safety Data	Y	N	N	L	V
AADT	Changes in AADT affect exposure rates at grade crossings.	Compare changes in AADT (or exposure) with changes in grade crossing incidents	AADT Incident data	N	Y	N	L	V

Trains Per Day	Changes in trains per day affect	Compare changes in	TPD	N	Y	N	L	V
(TPD)	exposure rates at grade	train traffic (or	Incident data		_			
	crossings.	exposure) with						
		changes in grade						
		crossing incidents.						
Operation	Education and awareness	Interview Operation	State Operation	Y	Y	Y	М	V
Lifesaver	program dedicated to ending	Lifesaver staff and	Lifesaver					
	tragic collisions, fatalities, and	presenters.	Programs					
	injuries at highway-rail grade							
	crossings and on railroad rights	Use the most active	Incident data					
	of way.	state Operation						
		Lifesaver programs						
		to see if there is any						
		correlation between						
		rail safety and						
		Operation Lifesaver.	T 1 1 1					
Drunk Driver	Increased awareness of the	Look for a decrease	Incident data	N	Ŷ	N	L	М
Programs	dangers of drunk driving result	in incidents that						
	in a safer environment for all							
	Ingliway users.	impoined by clockel						
	tolerance laws	over the 10 years						
	The TEA 21 provides grants	over the 10 years.						
	to States for DIII programs							
Enforcement	Law and photo enforcement of	Look at tickets and	Violation data	N	Y	Y	L	V
Emoreement	traffic laws related to the	fines for crossing	violation data	1	1	1	Ľ	,
	crossing discourage risky	violations over 10	Tickets and					
	behavior at highway-rail grade	vears.	fines					
	crossings.	<i>j</i> =						
		Review existing	Incident data					
		studies involving						
		enforcement						
		(PEERS, Naperville,						
		IL).						
Corridor	Decisions about crossing	Compare crossings	Corridor	N	Y	Y	L	М
Approach	improvements are made by	on a corridor with	information					
	considering a stretch of	other similar						
	crossings together rather than	crossings.	Incident data					
	each crossing individually.							
		Review literature on						
		existing corridors.						1

Appendix C. Percent Impact and Percent Reduction The research team quantitatively analyzed eight success factors. The objective was to rank their effectiveness based on two metrics, percent impact and percent reduction. The percent impact is the percentage of incidents, from 1994 to 2003, that can be attributed to behaviors that the factor was attempting to change. The percent reduction is the percentage of incidents reduced, from 1994 to 2003, that can be attributed to the safety countermeasures for a factor. Table C-1 shows the analysis of the eight factors.

Table C-	1. Fercent impact and Keu	
FACTOR	% IMPACT	% REDUCTION
Traffic Signal Preemption	1.82	0
Commercial Driver Safety	30.04/26.25	52.99/51.75
Locomotive Conspicuity	24.7	30.3
More Reliable Motor	7.54	11.19
Vehicles		
Sight Lines Clearance	5.13	8.81
Grade Separation	0.34	1.02
Crossing Closure	4.39	15.20
Warning Device Upgrades	3.01	8.25
Grade Crossing	2.23/3.41	3.07/13.92
Maintenance Rule		

 Table C-1. Percent Impact and Reduction Table

A. Percent of incidents impacted (caused) that can be attributed to behaviors that the factor was attempting to change.

B. Percent of incidents reduced that can be attributed to safety countermeasures for the factor

Traffic Signal Preemption

The Factor: Traffic signal preemption is available for crossings with a highway-highway intersection within 200 feet. The normal sequence of traffic control signal indication is preempted upon the approach of trains to avoid entrapment of vehicles on the highway-rail crossing by conflicting aspects of the traffic control signals and the highway-rail grade crossing active warning devices.

Data Source: FRA Inventory (Highway-Rail Crossing Inventory by State); RAIRS

Method: Limited data was available for this field. The team was able to determine the number of incidents that occurred at crossings interconnected to highway traffic signals for each year. However, an interconnection is not necessarily indicative of preemption. The team was also able to identify the total number of crossings for all 10 years that had preemption. This data could not be reduced further to determine the number that existed each year. Other approaches were taken, including looking at interconnected and not interconnected crossings that had incidents where the vehicle was trapped on the crossing. This also proved fruitless because no way existed to determine the reason that the vehicle became trapped or if preemption was a possibility in preventing it. The total

number of preempted crossings was less than 2 percent of all crossings; the percentage of incidents occurring at preempted crossings did not change over the ten year period.

		Crossings with Preemption	Total Crossings	
Success Factor: No	Total	4514	248564	1.82%

Next Steps: This factor will not be pursued any further.

Commercial Driver Safety

The Factor: Highway-rail grade crossing incidents involving trucks have the potential to be more severe than passenger automobiles. During the period 1994-2003, a greater emphasis was put on commercial driver safety. The Motor Carrier Safety Improvement Act of 1999 established the Federal Motor Carrier Safety Administration and emphasized truck safety. In October 1999, commercial drivers convicted of violating the grade crossing warning devices would lose their CDL.

Data Source: RAIRS

Method: The team used incidents from vehicles that would require a CDL. The percent impact was determined by using the percentage of the total number of incidents from 1994 to 2003 that involved commercial drivers. The percent reduction was determined by finding the number of fewer incidents attributed to commercial drivers that occurred in 2003 versus 1994. The data structure changed in 1997. Pickup trucks and vans were added as separate categories. These counts could have been included in the category of trucks pre-1997. Therefore, the team also looked at the number of fewer incidents attributed to commercial drivers that occurred in 2003 versus 1997.

		Truck-		School	Total Commercial	
	Truck	trailer	Bus	Bus	Driver	Total
1994	1235	543	3	3	1784	4979
1995	1189	504	3	3	1699	4633
1996	1097	471	8	4	1580	4257
1997	681	490	10	1	1182	3863
1998	460	477	3	4	944	3508
1999	408	475	6	1	890	3489
2000	407	446	4	4	861	3502
2001	350	465	7	3	825	3237
2002	338	452	4	3	797	3077
2003	313	375	7	0	695	2924
TOTAL	6478	4698	55	26	11257	37471

- A. 30.04% = 11257/37471
- B. 52.99% = (695-1784)/(2924-4979)

However, in 1997 pick-up trucks were separated out

A. 26.25% = 6194/23600
B. 51.75% = (695-1182)/(2924-3863)

Success Factor: Yes

Next Steps: This category could be confounded with other factors and therefore appear to have a much larger effect than actual. Some areas to pursue are: to incorporate the number of CDLs by year, or truck miles by year, investigate how many drivers lost their CDL as a result of the disqualification rule, and combine a subset of commercial drivers and the other factors to determine the overlap.

Locomotive Conspicuity

The Factor: A final rule published in March 1996, effective in December 1997 stated that all locomotives exceeding 20 mph over the crossing must have auxiliary alerting lights in addition to the headlight.

Data Source: RAIRS

Method: The FRA published report *Safety of Highway-Railroad Crossings: Use of Auxiliary External Alerting Devices to Improve Locomotive Conspicuity* [11], which stated that a significant difference existed in the effectiveness of the alerting lights during the day and night. The lights provided more benefit in the night. The team used incidents in which the rail equipment struck the highway user at dark, dawn and dusk as the measure of locomotive conspicuity. The percent impact was determined by using the percentage of the total number of incidents from 1994 to 2003 in which the rail equipment struck the highway user at dark or dusk. The percent reduction was determined by finding the number of fewer incidents that occurred in 2003 versus 1994.

	Rail Equip.	struck highway use	r at dark, dawn		
		and dusk		Total	
Year	Pulling	Pushi	ng	Incidents	
1994	1220		100	4,979	
1995	1107		107	4,633	
1996	981		88	4,257	
1997	834		67	3,865	
1998	763		79	3,508	
1999	728		70	3,489	
2000	804		81	3,502	
2001	694		78	3,237	
2002	644		95	3,077	
2003	616		80	2,920	
TOTAL	8391	;	845	37,467	
	Α.	24.7% =	= (8391+845)/37,467		
	В.	30.3% =	((616+80)-	(1220+100))/(2920-4979)	

Success Factor: Yes

Next Steps: Use data to rank crossings by darkness. The FRA published report *Use of Auxiliary External Alerting Devices to Improve Locomotive Conspicuity* [11] states a statistically significant difference in the effectiveness of alerting lights in daylight and darkness. Consider the railroad equipment accident database as a source, which lists a cause of "Highway user misjudgment under normal weather and traffic conditions". The narratives could provide more detailed information.

More Reliable Motor Vehicles

The Factor: During the period 1994 to 2003 automobiles have been improved to be safer and more reliable. A more reliable vehicle reduces the likelihood of breaking down (stalling) on the tracks and subsequently being hit by an oncoming train.

Data Source: RAIRS

Method: The database identifies incidents in which the highway vehicle was stalled on the tracks at the time of impact. The percent impact was determined by using the percentage of the total number of incidents from 1994 to 2003 in which the highway vehicle was stalled on the crossing. The percent reduction was determined by finding the number of fewer incidents attributed to stalled vehicles that occurred in 2003 versus 1994.

	Stalled on	
Year	Crossing	Total
1994	412	4,979
1995	438	4,633
1996	370	4,257
1997	252	3,864
1998	227	3,508
1999	243	3,489
2000	231	3,502
2001	228	3,236
2002	241	3,077
2003	182	2,924
TOTAL	2,824	37,471

A. 7.54% = 2824/37471

B. 11.19% = (182-412) / (2924-4979)

Success Factor: Yes

Next Steps: Use JD Power Associates or Consumer Reports as a source on automobile reliability by years. The National Highway Traffic Safety Administration database FARS contains driver information and vehicle types.
Sight Lines Clearance

The Factor: The clearing of vegetation and removal of obstructions surrounding a grade crossing enables highway-users to observe an oncoming train from greater distances from the crossing. Highway-users have a better chance to stop safely, and the risk of being surprised by a train is reduced.

Data Source: RAIRS

Method: The percent impact was determined by using the percentage of the total number of incidents from 1994 to 2003 that described some visual obstruction present at the grade crossing at the time of impact. The percent reduction was determined by finding the number of fewer incidents in which an obstruction was present that occurred in 2003 versus 1994.

Year	Permanent Structure	Standing Railroad Equipment	Passing Train	Topography	Vegetation	Highway Vehicles	Other (Specify in Narrative)
1994	94	39	18	37	84	22	40
1995	88	27	19	39	58	14	38
1996	76	20	14	48	63	7	35
1997	73	25	8	38	61	13	46
1998	59	27	16	24	74	11	32
1999	55	20	14	14	40	12	17
2000	41	22	10	21	50	7	36
2001	34	19	6	13	39	11	28
2002	31	9	14	23	40	18	13
2003	36	11	12	22	21	9	23
TOTAL	587	219	131	279	530	124	308

A. 5.13% = 1923/37471

B. 8.81% = (113-294)/(2924-4979)

Success Factor: Uncertain

Next Steps: Examine the proportion of obstructed sightlines that are attributed to ones that could be influenced by countermeasures (e.g., vegetation) and those that are not (e.g., topography). Consider the railroad equipment accident database as a source, which lists a cause of "Highway user unaware due to environmental factors." The narratives could provide more detailed information.

Crossing Closure

The Factor: When a crossing is little used or redundant, eliminating the crossing becomes an option. A crossing closure physically removes all access to the grade crossing, eventually eliminating it completely. When a crossing is closed, the risk associated with a collision between a vehicle and a train is reduced to nearly zero.

Data Source: FRA Inventory (Hwy-Rail Crossing Inventory by State); RAIRS

Method:

Probable incident rate is x_i incident per year, which is (total incidents over 9+i years)/(9+i years), where i is 1 to 10.

1984 was used as the base year to compute the probable incident rate and incidents at closed crossing since 1984 were examined.

The total probable incident rate (298.98) is the number of incidents that may have occurred in 2003 if all the closed crossings stayed open.

Probable incidents for year i = the sum from 1994 to year i of (probable incident rate * i). Probable incidents for year i is the number of incidents that may have occurred for year i if the crossings closed between 1994 and year i stayed open.

Probable incidents between year i and $2003 = (x_i \text{ incidents per year})^*(11\text{-}i)$. Probable incidents between year i and 2003 is the number of incidents that may have occurred between year i and 2003 if the crossings closed in year i stayed open.

	Year (i)	Number of incidents (RAIRS)	# of incidents from closed crossings since 1984 (RAIRS)	# of Crossings Closed (FRA INVENTORY)	Probable incident Rate	Probable incidents for year i	Probable incidents from year i to 2003	Actual plus Probable
1994	1	4979	278	4010	27.80	27.80	278.00	5006.80
1995	2	4633	327	4249	29.73	57.53	267.55	
1996	3	4257	609	6020	50.75	108.28	406.00	
1997	4	3865	411	4734	31.62	139.89	221.31	
1998	5	3508	348	3582	24.86	164.75	149.14	
1999	6	3489	335	3404	22.33	187.08	111.67	
2000	7	3502	413	4442	25.81	212.90	103.25	
2001	8	3237	646	4543	38.00	250.90	114.00	
2002	9	3077	389	3070	21.61	272.51	43.22	
2003	10	2924	503	3948	26.47	298.98	26.47	3222.98
Total		37471	4259	42002	298.98		1720.61	

Percent Impact = 4.39%

Percent Impact = (the sum of probable incidents between 1994 and 2003)/(the sum of actual and probable incidents between 1994 and 2003)*100 Percent Impact = 1720.61/(1720.61+37471)*100 Percent Reduction = 15.20% Percent Reduction = the absolute value of the (change in probable incidents from 1994 to 2003)/(change in actual incidents plus probable incidents from 1994 to 2003)*100 Percent Reduction = ABS(27.80-298.98)/(5006.80-3222.98)*100

Success Factor: Yes

Next Steps: Re-examine the predicted number of incidents. Find a better approximation than linear extrapolation. Cite case studies as supporting evidence, such as North Carolina Sealed Corridor. Consider the impact of rerouted traffic on adjacent crossings.

Grade Separation

The Factor: Grade Separation is offsetting the rail tracks from the roadway by either an underpass or an overpass. The risk of a collision is reduced because the vehicle and train paths no longer intercept.

Data Source: FRA Inventory (History & Current File); RAIRS

Method: For detailed explanation see crossing closures above.

	Year (i)	Number of Incident (RAIRS)Si	Number of Incidents from Separated Xing nce 1984 (RAIRS)	Number of Crossing Separated (FRA INVENTORY)	Probable Incident Rate	Probable Incident for Year i	Probable Incidents from Year i to 03	Actual Plus Probable
1994	1	4979	11	25	1.10	1.1	11.00	4980.1
1995	2	4633	3	29	0.27	1.37	2.45	
1996	3	4257	83	28	6.92	8.29	55.33	
1997	4	3865	25	18	1.92	10.21	13.46	
1998	5	3508	31	23	2.21	12.43	13.29	
1999	6	3489	24	19	1.60	14.03	8.00	
2000	7	3502	43	24	2.69	16.71	10.75	
2001	8	3237	55	27	3.24	19.95	9.71	
2002	9	3077	16	30	0.89	20.84	1.78	
2003	10	2924	18	27	0.95	21.79	0.95	2945.79
		37471	309	250	21.79		126.72	
Percent Im	pact	0.34%						

Percent Reduction 1.02%

Success Factor: No

Next Steps: Grade Separation is a useful tool for increasing safety at highway-rail grade crossings. By removing the intersection for cars and trains to meet, the risk of a vehicle-train incident at that crossing is eliminated. However, during the period of study 1994-2003, only 274 crossings were separated. This is not a large enough number to produce a significant effect on a national scale.

Warning Device Upgrades

The Factor: Each type of warning device has an effectiveness value associated with it. A passive warning device is less effective than flashing lights and gates. When crossing warning devices are upgraded to ones with a higher effectiveness value the risk of collision at the crossing is reduced.

Data Source: FRA Inventory (History & Current File); RAIRS

Method: Due to the time consuming nature of evaluating the warning device upgrades for each state, the team looked only at the State of Illinois. Illinois has a large number of crossings and highway-rail grade crossing incidents. To determine the number of incidents that were saved by upgrading warning devices, the team used an effectiveness rate for each type of upgrade:

- Passive to Flashing Lights 0.7
- Passive to Gates 0.83
- Passive to Stop Signs 0.35
- Flashing Lights to Gates 0.69

For each year 1994 to 2003, the team also developed an accident rate for each type of warning device. This formula was accident rate = number of incidents at crossing with warning device/number of total crossings with warning device.

The probable incident rate for year i was determined by (accident rate) x (number of upgraded crossings) x (upgrade effectiveness).

The probable incident year i column is the number of additional incidents that would have occurred that year if no crossings were upgraded (either in that year or any previous years).

The probable incidents from year i to 2003 is the number of additional incidents that would have occurred over the ten years from the crossings upgraded in year i.

Upgrade of Warning Devices for Illinois

		Guesstimate Incidents												
			Guesstimate	Guesstimate	from Year i	Actual plus								
	Year (i)	# Incidents	Rate	Year i	to 03	Guesstimate								
1994	1	337	1.960560782	1.961	19.6056078	338.961								
1995	2	295	1.085918267	3.04691827	9.77326441									
1996	3	232	1.115561317	4.16247958	8.92449054									
1997	4	213	0.753095961	4.91557555	5.27167173									
1998	5	199	0.942962012	5.85853756	5.65777207									
1999	6	202	1.370298279	7.22883584	6.8514914									
2000	7	217	0.377446653	7.60628249	1.50978661									
2001	8	212	0.823870976	8.43015347	2.47161293									
2002	9	172	1.028719964	9.45887343	2.05743993									
2003	10	157	0.235026135	9.69389957	0.23502613	166.6939								
		2236	9.693460348		62.3581636									

Percent Impact 2.71%

Percent Reduction 4.49%

Upgrade of Warning Devices

					Probable	
			Probable	Probable	Incidents	
		Number of	Incident	Incident	from Year i	Actual Plus
	Year (i)	Incidents	Rate	Year i	to 03	Probable
1994	1	4979	27.627	1.961	276.268	4980.961
1995	2	4633	24.318	26.279	218.858	
1996	3	4257	20.442	46.721	163.540	
1997	4	3865	23.640	70.361	165.479	
1998	5	3508	14.905	85.266	89.428	
1999	6	3489	19.164	104.429	95.818	
2000	7	3502	17.642	122.071	70.566	
2001	8	3237	17.459	139.529	52.376	
2002	9	3077	10.810	150.339	21.619	
2003	10	2924	8.302	158.641	8.302	3082.641
		37471	184.307		1162.255	
		Percent Ir	npact	3.01%		
		Percent R	eduction	8.25%		

Success Factor: Uncertain

Next Steps: A deeper look into inventory data provided by the State of Illinois should reveal whether the majority of upgrades were done prior to the study period. The FRA inventory yielded inconclusive results.

Grade Crossing Maintenance Rule

The Factor: In 1995, the Final Rule on Grade Crossing Signal System Safety was issued. This rule stated that railroads must implement specific maintenance, inspection, and warning testing requirements for active crossing systems. The regular maintenance and inspection would reduce the risk of warning device malfunction.

Data Source: RAIRS

Method: For this factor, the team assumed that the ways in which a warning device could malfunction would be too long a warning, too short a warning, or no warning at all. The database identifies incidents that have both alleged and confirmed warning device malfunction. The percent impact was determined by using the percentage of the total number of incidents from 1994 to 2003 that had either a confirmed or alleged warning device malfunction. The percent reduction was determined by finding the number of fewer incidents with warning device malfunction that occurred in 2003 versus 1994. However, it appeared in 1997 that better data was collected for this field. Therefore, the team also looked at the number of fewer incidents with a warning device malfunction that occurred in 2003 versus 1997.

	Alleged Warning Time Greater Than 60 Seconds	Alleged Warning Time Less Than 20 Seconds	Alleged No Warning	Confirmed Warning Time Greater Than 60 Seconds	Confirmed Warning Time Less Than 20 Seconds	Confirmed No Warning	Empty N	Total Ialfunction
1994	0	0	10	0	0	0	0	10
1995	0	0	7	0	0	0	0	7
1996	0	0	10	0	0	0	0	10
1997	159	8	4	12	4	17	0	204
1998	145	6	4	13	4	19	0	191
1999	46	11	7	8	1	21	0	94
2000	50	7	4	2	0	22	0	85
2001	38	16	12	2	2	13	0	83
2002	32	7	9	8	3	18	0	77
2003	35	8	9	3	1	17	0	73
TOTAL	505	63	76	48	15	127	0	823

A. 2.23% = 823/37471

B. 3.07% = (73-10)/(2924-4979)

However, better data was collected in 1997

- A. 3.41% = 807/23600
- B. 13.92% = (73-204)/(2924-3865)

Success Factor: Yes

Next Steps: The FRA collects data on activation failures that are available on its Web site. The data exists for the years 2000 through 2003. A time series or trend analysis of this data might be useful. General inspection reports are available from 1995 to the present. A concern exists because of the inclusion of alleged malfunctions, should these be removed the percentages would be much lower. Consider the railroad equipment accident database as a source, which lists a cause of "Malfunction, improper operation of train activated warning devices."

Other Factors Considered

From the inception of this project the team considered other possible factors in addition to those listed above. Some were found to be too difficult to analyze with the available data, and others were simply not determined to have a large impact.

Difficult to Analyze

- *Section 130 funding* FHWA ceased collecting the state crossing improvements plans prior to the period in study. Section 130 funds cover upgrades, closures, and separations. There is overlap between this factor and many of the other factors in study.
- *Urbanization* The distribution of grade crossings that are urban versus rural ceased to be collected after 1997. Population censuses are taken only every ten years. The team was unable to conclude anything about population migration toward urban climates, and/or the location of the highway-rail grade crossings.
- *Driver behavior* This factor is extremely difficult to analyze, there are few human behavior studies conducted on highway-rail intersections. Driver behavior is involved in many of the other factors so there is overlap. It may be useful for supporting data.
- *Operation Lifesaver* Little to no evaluations have been done on OL. There is no evaluation on a national scale. Without conducting a controlled experiment, it is extremely difficult to analyze.

Low Impact

- Changes in crossing characteristics
- Changes in accident reporting
- Onboard train technology
- New training and manuals available for train crews
- AADT
- Trains per day
- Drunk driver programs
- Enforcement
- Corridor approach

Appendix D. Distribution of Incidents by Type of Vehicles

			Truck	Pickup-			School		Other Motor			
	Auto	Truck	Trailer	Truck	Van	Bus	bus	Motorcycle	Vehicle	Pedestrian	Other	Total
1994	2940	1235	543	0	0	3	3	22	0	77	156	4979
1995	2703	1189	504	0	0	3	3	14	0	74	143	4633
1996	2463	1097	471	0	0	8	4	11	0	95	108	4257
1997	2078	681	490	335	96	10	1	7	49	73	43	3863
1998	1810	460	477	444	114	3	4	7	56	87	46	3508
1999	1763	408	475	513	129	6	1	7	47	81	59	3489
2000	1697	407	446	554	161	4	4	12	67	88	62	3502
2001	1516	350	465	523	129	7	3	6	65	92	81	3237
2002	1449	338	452	490	141	4	3	8	45	71	76	3077
2003	1401	313	375	470	137	7	0	12	47	79	83	2924
TOTAL	19820	6478	4698	3329	907	55	26	106	376	817	857	37469

 Table D-1. Total Incidents by Type of Vehicles

 Table D-2. Percent of Incident by Type of Vehicles

	Auto	Truck	Truck Trailer	Pickup- Truck	Van	Bus	School bus	Motorcycle	Other Motor Vehicle	Pedestrian	Other	Total
1994	59.05%	24.80%	10.91%	0.00%	0.00%	0.06%	0.06%	0.44%	0.00%	1.55%	3.13%	100.00%
1995	58.34%	25.66%	10.88%	0.00%	0.00%	0.06%	0.06%	0.30%	0.00%	1.60%	3.09%	100.00%
1996	57.86%	25.77%	11.06%	0.00%	0.00%	0.19%	0.09%	0.26%	0.00%	2.23%	2.54%	100.00%
1997	53.79%	17.63%	12.68%	8.67%	2.49%	0.26%	0.03%	0.18%	1.27%	1.89%	1.11%	100.00%
1998	51.60%	13.11%	13.60%	12.66%	3.25%	0.09%	0.11%	0.20%	1.60%	2.48%	1.31%	100.00%
1999	50.53%	11.69%	13.61%	14.70%	3.70%	0.17%	0.03%	0.20%	1.35%	2.32%	1.69%	100.00%
2000	48.46%	11.62%	12.74%	15.82%	4.60%	0.11%	0.11%	0.34%	1.91%	2.51%	1.77%	100.00%
2001	46.83%	10.81%	14.37%	16.16%	3.99%	0.22%	0.09%	0.19%	2.01%	2.84%	2.50%	100.00%
2002	47.09%	10.98%	14.69%	15.92%	4.58%	0.13%	0.10%	0.26%	1.46%	2.31%	2.47%	100.00%
2003	47.91%	10.70%	12.82%	16.07%	4.69%	0.24%	0.00%	0.41%	1.61%	2.70%	2.84%	100.00%
Total	52.90%	17.29%	12.54%	8.88%	2.42%	0.15%	0.07%	0.28%	1.00%	2.18%	2.29%	100.00%

Distribution of Incidents by Type of Vehicle

Appendix E. An Analysis of Severity

		Auto			Truck		Truck-Trailer			
	Incident	Vehicle Fat	Train Fat	Incident	Vehicle Fat	Train Fat	Incident	Vehicle Fat	Train Fat	
1994	2940	381	0	1235	136	0	543	15	1	
1995	2703	324	0	1189	144	0	504	22	1	
1996	2463	269	0	1097	121	0	471	21	1	
1997	2078	246	0	681	89	0	490	21	0	
1998	1810	205	0	460	57	0	477	13	0	
1999	1763	185	0	408	33	0	475	12	11	
2000	1697	177	1	407	42	1	446	18	1	
2001	1516	174	0	350	40	0	465	20	0	
2002	1449	176	0	338	33	0	452	10	0	
2003	1401	138	0	313	26	1	375	11	0	
Total	19820	2275	1	6478	721	2	4698	163	15	

Table E-1. Fatalities Involving Auto, Truck, and Truck-Trailer

Table E-2. Fatality Rate (Fatality/Incident) for Auto, Truck and Truck-Trailer

		Auto		Truck		Truck-Trailer
	Vehicle	Train	Vehicle	Train	Vehicle	Train
1994	0.13	0.00	0.11	0.00	0.03	0.00
1995	0.12	0.00	0.12	0.00	0.04	0.00
1996	0.11	0.00	0.11	0.00	0.04	0.00
1997	0.12	0.00	0.13	0.00	0.04	0.00
1998	0.11	0.00	0.12	0.00	0.03	0.00
1999	0.10	0.00	0.08	0.00	0.03	0.02
2000	0.10	0.00	0.10	0.00	0.04	0.00
2001	0.11	0.00	0.11	0.00	0.04	0.00
2002	0.12	0.00	0.10	0.00	0.02	0.00
2003	0.10	0.00	0.08	0.00	0.03	0.00

Fatality Rate for Highway Users for Auto, Truck, Truck-Trailer

Fatality Rate for Train Occupants for Auto, Truck, and Truck-Trailer

From the figure below, the severity to highway users of incidents that involved automobiles and trucks is higher than incidents that involved truck trailers. This could be because on average, automobiles and trucks have more passengers than truck trailers. Thus, automobiles and trucks have the possibility of more injuries during an incident.

Incident Severity to Highway User from Automobile, Truck, or Truck-Trailer

Appendix F. Activation Failure

	Activation		Active	Crossing		
Year	Failure	Gates	Lights	Other ^a	Total	Failure Rate ^b
1992	2279	27507	29949	1726	59182	3.851
1993	1672	28139	29645	1672	59456	2.812
1994		29050	29325	1661	60036	
1995		29912	28910	1583	60405	
1996		30813	28614	1557	60984	
1997		31696	28354	1515	61565	
1998 & 1999	1269	65641	55972	2984	124597	1.018
2000	595	34296	27100	1417	62813	0.947
2001	429	35422	26558	1342	63322	0.677
2002	472	36403	25841	1188	63432	0.744
2003	472	36440	25656	1269	63365	0.745
Source	FRA		FRA P	ublication		

Table F-1. Failure Rates for Active Grade Crossing Warning Devices

^aOther includes WigWag, Highway Signal, and Bells.

^bRate equals activation failure times 100 divided by total active crossing

 Table F-1. Failure Rate for Active Grade Crossing Warning Devices

Appendix G. Breakdown of Isolated Success Factors Success Factors Keys

- C = Commercial Driver Safety
- L = Locomotive Conspicuity
- M = Grade Crossing Maintenance Rule
- R = More Reliable Motor Vehicles
- S = Sight Lines Clearance

Year	C'	CL'	CR'	CM'	CS'	CLR'	CLM'	CLS'	CRM'	CRS'	CMS'	CLRM	CLRS	CLMS	CRMS	CLRMS
1994	1246	295	62	2	98	62	0	15	0	3	0	0	1	0	0	0
1995	1223	240	66	2	85	66	0	10	0	5	0	0	2	0	0	0
1996	1150	224	63	2	80	40	0	15	0	1	1	1	3	0	0	0
1997	834	157	30	42	70	28	8	4	1	2	5	0	1	0	0	0
1998	676	106	24	36	54	29	5	3	0	2	5	2	1	1	0	0
1999	638	123	36	16	48	20	3	3	1	0	1	1	0	0	0	0
2000	638	110	30	14	35	22	4	5	1	1	1	0	0	0	0	0
2001	623	98	27	10	37	21	2	1	0	0	3	3	0	0	0	0
2002	602	99	38	8	24	21	1	3	0	0	0	1	0	0	0	0
2003	534	93	18	12	23	6	0	4	0	2	2	0	0	1	0	0

Table G-1. Breakdown of Commercial Driver Safety Overlap by Year

С	CL	CR	СМ	CS	CLR	CLM	CLS	CRM	CRS	CMS	CLRM	CLRS	CLMS	CRMS	CLRMS
11257	1964	744	198	661	331	33	73	11	24	20	8	8	2	0	0
					315	23	63	3	16	18					
	1545	394	144	554											
8164															
C'=	-	810	64												

C'=

C'=C-(CL'+CR'+CM'+CS'+CLR'+CLM'+CLS'+CRM'+CRS'+CMS'+CLRM+CLRS+CLMS+CRMS+CLRMS)

CLR'= 315 CLR'=CLR-(CLRM+CLRS+CLRMS)

CLM'= 23 CLM'=CLM-(CLRM+CLMS+CLRMS)

CLS'= 63 CLS'=CLS-(CLRS+CLMS+CLRMS)

CRM'= 3

CRM'=CRM-(CLRM+CRMS+CLRMS)

CRS'= 16 CRS'=CRS-(CLRS+CRMS+CLRMS)

CMS'= 18 CMS'=CMS-(CLMS+CRMS+CLRMS)

CL'= 1545 CL'=CL-(CLR'+CLM'+CLS'+CLRM+CLRS+CLMS+CLRMS)

CR'= 394 CR'=CR-(CLR'+CRM'+CRS'+CLRM+CLRS+CRMS+CLRMS)

CM'= 144 CM'=CM-(CLM'+CRM'+CMS'+CLRM+CLMS+CRMS+CLRMS)

CS'= 544

CS'=CS-(CLS'+CRS'+CMS'+CLRS+CLMS+CRMS+CLRMS)

Table G-2. Breakdown of Locomotive Conspicuity Overlap by Year

Year	L'	LC'	LS'	LR'	LM'	LCS'	LCR'	LCM'	LSR'	LSM'	LRM'	LCSR	LSRM	LRMC	LMCS	LCSRM
1994	745	295	34	162	3	15	62	0	3	0	0	1	0	0	0	0
1995	678	240	26	182	1	10	66	0	8	1	0	2	0	0	0	0
1996	589	224	23	166	2	15	40	0	6	0	0	3	0	1	0	0
1997	530	157	31	105	24	4	28	8	4	0	9	1	0	0	0	0
1998	527	106	21	104	32	3	29	5	3	0	8	1	0	2	1	0
1999	525	123	10	101	8	3	20	3	2	0	2	0	0	1	0	0
2000	609	110	16	103	10	5	22	4	2	0	4	0	0	0	0	0
2001	512	98	13	104	13	1	21	2	1	0	4	0	0	3	0	0
2002	459	99	20	117	12	3	21	1	2	0	4	0	0	1	0	0
2003	465	93	12	99	12	4	6	0	3	0	1	0	0	0	1	0

L	LC	LS	LR	LM	LCS	LCR	LCM	LSR	LSM	LRM	LCSR	LSRM	LRMC	LMCS	LCSRM
9236	1964	314	1640	183	73	331	33	42	3	40	8	0	8	2	0
					63	315	23	34	1	32					
	1545	206	1243	117											
5639															

L'= 5639

L'=L-(LC'+LS'+LR'+LM'+LCS'+LCR'+LCM'+LSR'+LSM'+LRM'+LCSR+LSRM+LRMC+LMCS+LCSRM)

LCS'= 63 LCS'=LCS-(LCSR+LMCS+LCSRM)

LCR'= 315 LCR'=LCR-(LCSR+LRMC+LCSRM)

LCM'= 23 LCM'=LCM-(LRMC+LMCS+LCSRM)

LSR'= 34 LSR'=LSR-(LCSR+LSRM+LCSRM)

LSM'= 1 LSM'=LSM-(LSRM+LMCS+LCSRM)

LRM'= 32 LRM'=LRM-(LSRM+LRMC+LCSRM)

LC'= 1545 LC'=LC-(LCS'+LCR'+LCM'+LCSR+LRMC+LMCS+LCSRM)

LS'= 206 LS'=LS-(LCS'+LSR'+LSM'+LCSR+LSRM+LMCS+LCSRM)

LR'= 1243 LR'=LR-(LCR'+LSR'+LRM'+LCSR+LSRM+LRMC+LCSRM)

LM'= 117

LM'=LM-(LCM'+LSM'+LRM'+LSRM+LRMC+LMCS+LCSRM)

Year	Μ'	MS'	MR'	MC'	ML'	MSR'	MSC'	MSL'	MRC'	MRL'	MCL'	MSRC	MSCL	MRCL	MSRL	MSRCL
1994	5	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0
1995	3	0	0	2	1	0	0	1	0	0	0	0	0	0	0	0
1996	2	1	1	2	3	0	1	0	0	-1	0	0	0	1	0	0
1997	104	6	5	42	25	0	5	0	1	8	8	0	0	0	0	0
1998	89	8	5	36	34	0	5	0	0	6	5	0	1	2	0	0
1999	56	4	2	16	8	0	1	0	1	2	3	0	0	1	0	0
2000	43	7	1	14	10	0	1	0	1	4	4	0	0	0	0	0
2001	44	2	2	10	14	0	3	0	0	3	2	0	0	3	0	0
2002	43	3	5	8	13	0	0	0	0	3	1	0	0	1	0	0
2003	41	3	1	12	12	0	2	0	0	1	0	0	1	0	0	0

Table G-3. Breakdown of Grade Crossing Maintenance Rule Overlap by Year

М	MS	MR	MC	ML	MSR	MSC	MSL	MRC	MRL	MCL	MSRC	MSCL	MRCL	MSRL	MSRCL
834	55	59	198	183	0	20	3	11	34	33	0	2	8	0	0
					0	18	1	3	26	23					
	34	22	144	123											
430															

M'= 430

M'=M-(MS'+MR'+MC'+ML'+MSR'+MSC'+MSL'+MRC'+MRL'+MCL'+MSRC+MSCL+MRCL+MSRL+MSRCL)

MSR'= 0 MSR'=MSR-(MSRC+MSRL+MSRCL)

MSC'= 18 MSC'=MSC-(MSRC+MSCL+MSRCL)

MSL'= 1 MSL'=MSL-(MSCL+MSRL+MSRCL)

MRC'= 3

MRC'=MRC-(MSRC+MRCL+MSRCL)

MRL'= 26 MRL'=MRL-(MRCL+MSRL+MSRCL)

MCL'= 23 MCL'=MCL-(MSCL+MRCL+MSRCL)

MS'= 34 MS'=MS-(MSR'+MSC'+MSL'+MSRC+MSCL+MSRL+MSRCL)

MR'= 22 MR'=MR-(MSR'+MRC'+MRL'+MSRC+MRCL+MSRL+MSRCL)

MC'= 144 MC'=MC-(MSC'+MRC'+MCL'+MSRC+MSCL+MRCL+MSRCL)

ML'= 123

ML'=ML-(MSL'+MRL'+MCL'+MSCL+MRCL+MSRL+MSRCL)

Table G-4.	Breakdown	of More	Reliable	Motor	Vehicles	Overlap	by	Year
------------	-----------	---------	----------	-------	----------	---------	----	------

Year	R'	RM'	RC'	RL'	RS'	RCL'	RCM'	RCS'	RLM'	RLS'	RSM'	RCLS	RCLM	RCMS	RMSL	RCLMS
1994	116	0	62	162	3	62	0	3	0	3	0	1	0	0	0	0
1995	105	0	66	182	4	66	0	5	0	8	0	2	0	0	0	0
1996	85	0	63	166	5	40	0	1	0	6	0	3	1	0	0	0
1997	64	4	30	105	4	28	1	2	9	4	0	1	0	0	0	0
1998	50	3	24	104	1	29	0	2	8	3	0	1	2	0	0	0
1999	76	2	36	101	2	20	1	0	2	2	0	0	1	0	0	0
2000	63	1	30	103	4	22	1	1	4	2	0	0	0	0	0	0
2001	65	1	27	104	2	21	0	0	4	1	0	0	3	0	0	0
2002	51	4	38	117	3	21	0	0	4	2	0	0	1	0	0	0
2003	52	1	18	99	0	6	0	2	1	3	0	0	0	0	0	0

R	RM	RC	RL	RS	RCL	RCM	RCS	RLM	RLS	RSM	RCLS	RCLM	RCMS	RMSL	RCLMS
2824	59	744	1640	86	331	11	24	40	42	0	8	8	0	0	0
					315	3	16	32	34	0					
	16	394	1243	28											
727															

R'= 727

R'=R-(RM'+RC'+RL'+RS'+RCL'+RCM'+RCS'+RLM'+RLS'+RSM'+RCLS+RCLM+RCMS+RMSL+RCLMS)

RCL'= 315 RCL'=RCL-(RCLS+RCLM+RCLMS)

RCM'= 3 RCM'=RCM-(RCLM+RCMS+RCLMS)

RCS'= 16 RCS'=RCS-(RCLS+RCMS+RCLMS)

RLM'= 32

RLM'=RLM-(RCLM+RMSL+RCLMS)

RLS'= 34 RLS'=RLS-(RCLS+RMSL+RCLMS)

RSM'= 0 RSM'=RSM-(RCMS+RMSL+RCLMS)

RM'= 16 RM'=RM-(RCM'+RLM'+RSM'+RCLM+RCMS+RMSL+RCLMS)

RC'= 394 RC'=RC-(RCL'+RCM'+RCS'+RCLS+RCLM+RCMS+RCLMS)

RL'= 1243 RL'=RL-(RCL'+RLM'+RLS'+RCLS+RCLM+RMSL+RCLMS)

RS'= 28

RS'=RS-(RCS'+RLS'+RSM'+RCLS+RCMS+RMSL+RCLMS)

	Table G-5.	Breakdown of Sight	Lines Clearance	Overlap by	Year
--	------------	---------------------------	------------------------	-------------------	------

Year	S'	SM'	SR'	SC'	SL'	SRM'	SMC'	SML'	SRC'	SRL'	SCL'	SMRC	SMCL	SRCL	SLMR	SMRCL
1994	137	0	3	98	34	0	0	0	3	3	15	0	0	1	0	0
1995	109	0	4	85	26	0	0	1	5	8	10	0	0	2	0	0
1996	107	1	5	80	23	0	1	0	1	6	15	0	0	3	0	0
1997	116	6	4	70	31	0	5	0	2	4	4	0	0	1	0	0
1998	117	8	1	54	21	0	5	0	2	3	3	0	1	1	0	0
1999	76	4	2	48	10	0	1	0	0	2	3	0	0	0	0	0
2000	99	7	4	35	16	0	1	0	1	2	5	0	0	0	0	0
2001	74	2	2	37	13	0	3	0	0	1	1	0	0	0	0	0
2002	61	3	3	24	20	0	0	0	0	2	3	0	0	0	0	0
2003	63	3	0	23	12	0	2	0	2	3	4	0	1	0	0	0

S	SM	SR	SC	SL	SRM	SMC	SML	SRC	SRL	SCL	SMRC	SMCL	SRCL	SLMR	SMRCL
1923	55	86	661	314	0	20	3	24	42	73	0	2	8	0	0
					0	18	1	16	34	63					
	34	28	554	206											
959															

S'= 959

S'=S-(SM'+SR'+SC'+SL'+SRM'+SMC'+SML'+SRC'+SRL'+SCL'+SMRC+SMCL+SRCL+SLMR+SMRCL)

SRM'= 0 SRM'=SRM-(SMRC+SLMR+SMRCL)

SMC'= 18 SMC'=SMC-(SMRC+SMCL+SMRCL)

SML'= 1 SML'=SML-(SMCL+SLMR+SMRCL)

SRC'= 16 SRC'=SRC-(SMRC+SRCL+SMRCL)

SRL'= 34 SRL'=SRL-(SRCL+SLMR+SMRCL)

SCL'= 63 SCL'=SCL-(SMCL+SRCL+SMRCL)

SM'= 34 SM'=SM-(SRM'+SMC'+SML'+SMRC+SMCL+SLMR+SMRCL)

SR'= 28 SR'=SR-(SRM'+SRC'+SRL'+SMRC+SRCL+SLMR+SMRCL)

SC'= 554 SC'=SC-(SMC'+SRC'+SCL'+SMRC+SMCL+SRCL+SMRCL)

SL'= 206

SL'=SL-(SML'+SRL'+SCL'+SMCL+SRCL+SLMR+SMRCL)

Appendix H. Kendall Partial Rank Correlation for Crossing Closure

Kendall Partial Rank Correlation Coefficient Methodology

Subject	a	b	с	d
Rank on Z	1	2	3	4
Rank on X	3	1	2	4
Rank on Y	2	1	3	4

A + is assigned to the pairs in which the lower rank precedes the higher. A - is assigned to the pairs in which the higher rank precedes the lower.

Pair	(a,b)	(a,c)	(a,d)	(b,c)	(b,d)	(c,d)
Z	+	+	+	+	+	+
X	-	-	+	+	+	+
Y	-	+	+	+	+	+

If Z is + and X is +, then X's sign agrees with Z's sign. If Z is + and Y is -, then Y's sign disagrees with Z's sign.

Y pairs whose sign	Y pairs whose sign	Total
agrees with Z's sign	disagrees with Z's	
	sign	
Α	В	A+B
С	D	C+D
A+C	B+D	(N)
		$\left(\frac{1}{2}\right)$
	Y pairs whose sign agrees with Z's sign A C A+C	Y pairs whose sign agrees with Z's signY pairs whose sign disagrees with Z's signABCDA+CB+D

$$\tau_{xy,z} = \frac{AD - BC}{\sqrt{(A+B)(C+D)(A+C)(B+D)}}$$

Region #	Region Name	States in the Region
1	Northeast	ME, NH, VT, MA, NY, RI, CT, NJ
2	Middle Atlantic	PA, OH, WV, VA, MD, DE
3	Southeast	KY, TN, NC, SC, GA, AL, MS, FL
4	North Central	MN, WI, IL, IN, MI
5	South	NM, TX, OK, AR, LA
6	Central	CO, NE, KS, IA, MO
7	Southwest	CA, NV, UT, AZ
8	Northwest	AK, WA, OR, ID, MT, WY, ND, SD

Table H-1. The Eight FRA Regions

Region	1994 Crossings Closed	1994-95 Incident Reduction	1994 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	1249	63	52928	1	3	1
R4	538	122	50352	4	1	2
R6	628	28	40334	3	5	3
R5	450	84	38998	5	2	4
R2	679	35	31239	2	4	5
R8	322	-6	30127	6	8	6
R7	89	4	16856	8	7	7
R1	153	16	15283	7	6	8

Table H-2. Kendall Partial Ranking for Year 1994

•^y,2 0.101014

F

_

 Table H-3. Kendall Partial Ranking for Year 1995

Region	1995 Crossings Closed	1995-96 Incident Reduction	1995 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	1123	86	52078	1	1	1
R4	544	86	49656	4	1	2
R6	258	38	40128	6	5	3
R5	529	73	38213	5	4	4
R2	1015	84	30263	2	3	5
R8	627	3	29589	3	7	6
R7	156	6	16805	7	6	7
R1	15	0	15279	8	8	8

τ _{xy,z}	0.4714045
-------------------	-----------

Region	1996 Crossings Closed	1996-97 Incident Reduction	1996 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	1287	105	51573	3	1	1
R4	1470	80	49341	2	2	2
R6	605	36	39662	4	6	3
R5	439	37	37777	5	5	4
R2	1858	20	29477	1	7	5
R8	301	49	29377	6	4	6
R7	88	59	16749	7	3	7
R1	73	6	15279	8	8	8

Table H-4. Kendall Partial Ranking for Year 1996

τ_{xy,z} -0.2948839

 Table H-5. Kendall Partial Ranking for Year 1997

Region	1997 Crossings Closed	1997-98 Incident Reduction	1997 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	2099	-6	50851	1	7	1
R4	833	107	48788	2	2	2
R6	392	70	38710	4	3	3
R5	331	144	37537	5	1	4
R8	285	10	29374	6	6	5
R2	596	36	28966	3	4	6
R7	105	-39	16682	8	8	7
R1	169	35	14883	7	5	8

$ au_{xy,z}$	0.0895622
--------------	-----------

Region	1998 Crossings Closed	1998-99 Incident Reduction	1998 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	775	53	49330	2	1	1
R4	593	-10	48208	3	5	2
R6	823	-19	38558	1	8	3
R5	484	-18	37196	4	7	4
R8	155	45	29189	7	2	5
R2	408	-7	28661	6	3	6
R7	6	-9	16661	8	4	7
R1	421	-16	14897	5	6	8

H-6. Kendall Partial Ranking for Year 1998

τ_{xyz}	-0 452267
•xy,∠	0.402201

H-7. Kendall Partial Ranking for Year 1999

Region	1999 Crossings Closed	1999-2000 Incident Reduction	1999 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	557	30	49475	3	2	1
R4	649	-30	48081	2	7	2
R6	759	17	37704	1	3	3
R5	100	-37	37092	8	8	4
R2	329	-3	28800	6	4	5
R8	405	-11	28644	5	5	6
R7	110	39	16556	7	1	7
R1	526	-18	14767	4	6	8

τ _{xy,z} -0.0	157103
------------------------	--------

d Reduction	Crossings	Rank Closed	Rank Reduction	Rank Crossings
13	49091	6	5	1
99	45777	1	1	2
34	37738	3	3	3
87	36843	2	2	4
26	28659	5	4	5
4	28236	4	7	6
-9	16557	8	8	7
11	14507	7	6	8
	A Reduction 13 99 34 87 26 4 -9 11	a Reduction Crossings 13 49091 99 45777 34 37738 87 36843 26 28659 4 28236 -9 16557 11 14507	A Reduction Crossings Crossings Crossings 13 49091 6 99 45777 1 34 37738 3 87 36843 2 26 28659 5 4 28236 4 -9 16557 8 11 14507 7	A Reduction Crossings Closed Reduction 13 49091 6 5 99 45777 1 1 34 37738 3 3 87 36843 2 2 26 28659 5 4 4 28236 4 7 -9 16557 8 8 11 14507 7 6

H-8.	Kendall	Partial	Ranking	for	Year	200
H-8.	Kendall	Partial	Ranking	for	Year	200

τ _{xy,z} 0	.7302967
---------------------	----------

H-9. Kendall Partial Ranking for Year 2001

Region	2001 Crossings Closed	2001-02 Incident Reduction	2001 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	252	-6	49091	6	8	1
R4	2002	56	45777	1	2	2
R6	429	12	37738	3	4	3
R5	853	59	36843	2	1	4
R2	301	-4	28659	5	6	5
R8	368	-5	28236	4	7	6
R7	53	50	16557	8	3	7
R1	197	-2	14507	7	5	8

τ _{xy,z}	0.3162278
-------------------	-----------

Region	2002 Crossings Closed	2002-03 Incident Reduction	2002 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	287	61	48946	4	1	1
R4	1176	52	44409	1	4	2
R6	544	54	37241	2	3	3
R5	407	57	36258	3	2	4
R2	111	-35	28156	8	8	5
R8	281	5	28081	5	5	6
R7	134	-15	16493	7	6	7
R1	278	-26	13814	6	7	8

H-10. Kendall Partial Ranking for Year 2002

0.3015113 $\tau_{xy,z}$

H-11.	Kendall	Partial	Ranking	for	Year 2	003

Region	2003 Crossings Closed	2003-04 Incident Reduction	2003 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	335	-56	48733	5	8	1
R4	206	-43	43177	7	6	2
R6	954	-51	35231	2	7	3
R5	401	-23	34610	4	5	4
R2	1017	3	27908	1	3	5
R8	275	12	27164	6	1	6
R7	61	0	16029	8	4	7
R1	727	11	13430	3	2	8
		τ _{xy,z} 0				

τ _{xv.z}	0	
-------------------	---	--

Appendix I. Kendall Partial Rank Correlation for Warning Device Upgrades

Region	1994 Crossings Upgraded	1994-95 Incident Reduction	1994 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	358.28	48	52928	1	2	1
R4	173.56	71	50352	2	1	2
R6	150.63	12	40334	5	5	3
R5	160.95	27	38998	4	3	4
R2	169.64	4	31239	3	6	5
R8	16.62	-5	30127	8	7	6
R7	22.96	20	16856	7	4	7
R1	23.86	-5	15283	6	7	8

I-1. Kendall Partial Ranking for Year 19	94
--	----

|--|

-

I-2.	Kendall	Partial	Ranking	for	Year	1995

Region	1995 Crossings Upgraded	1995-96 Incident Reduction	1995 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	287.87	24	52078	1	3	1
R4	137.37	6	49656	3	6	2
R6	99.47	28	40128	5	2	3
R5	127.42	20	38213	4	4	4
R2	220.8	46	30263	2	1	5
R8	64.52	12	29589	6	5	6
R7	52.85	-6	16805	7	7	7
R1	22.74	-9	15279	8	8	8
<u>R1</u>	22.74	-9	15279	8	8	8

$ au_{xy,z}$	0.4195732
--------------	-----------

Region	1996 Crossings Upgraded	1996-97 Incident Reduction	1996 Number Crossings	Rank Closed	Rank Reduction	Rank Crossings
R3	156.32	37	51573	2	1	1
R4	136.23	19	49341	4	2	2
R6	113.09	-26	39662	5	7	3
R5	151.5	-4	37777	3	5	4
R2	294	-34	29477	1	8	5
R8	36.17	15	29377	6	3	6
R7	12.87	14	16749	7	4	7
R1	9.26	-4	15279	8	5	8

I-3. Kendall Partial Ranking for Year 1996

$\tau_{xy,z}$	-0.1730567
---------------	------------

I-4. Kendall Partial Ranking for Year 1997

Region	1997 Crossings Upgraded	1997-98 Incident Reduction	1997 Number Crossings	Rank Upgraded	Rank Reduction	Rank Crossings
R3	472.94	7	50851	1	5	1
R4	141.62	40	48788	3	1	2
R6	78.8	13	38710	6	4	3
R5	118.16	-5	37537	4	6	4
R8	16.78	-5	29374	7	6	5
R2	192.05	30	28966	2	2	6
R7	13.95	-18	16682	8	8	7
R1	94.4	14	14883	5	3	8

τ _{xv.z} 0	.4624973
---------------------	----------

Region	1998 Crossings Upgraded	1998-99 Incident Reduction	1998 Number Crossings	Rank Upgraded	Rank Reduction	Rank Crossings
R3	199.12	-12	49330	1	4	1
R4	188.97	-23	48208	2	6	2
R6	40.38	-26	38558	7	7	3
R5	98.42	-45	37196	4	8	4
R8	63.92	-1	29189	5	1	5
R2	143.25	-3	28661	3	2	6
R7	3.06	-15	16661	8	5	7
R1	62.12	-3	14897	6	2	8

τ_{xy,z} 0.1666667

	I-6.	Kendall	Partial	Ranking	for	Year	1999
--	------	---------	----------------	---------	-----	------	------

Region	1999 Crossings Upgraded	1999-2000 Incident Reduction	1999 Number Crossings	Rank Upgraded	Rank Reduction	Rank Crossings
R3	239.55	49	49475	1	1	1
R4	231.85	-20	48081	2	8	2
R6	111.93	32	37704	5	2	3
R5	153.18	-9	37092	3	6	4
R2	146.8	-6	28800	4	4	5
R8	94.06	-8	28644	6	5	6
R7	14.53	9	16556	8	3	7
R1	39.15	-9	14767	7	6	8

τ _{xv.z} -0.2786522

Region

R3
R4
R6
R5
R2
R8
R7
R1

τ_{xy,z} 0.5705443

Region	2001 Crossings Upgraded	2001-02 Incident Reduction	2001 Number Crossings	Rank Upgraded	Rank Reduction	Rank Crossings
R3	182.87	-28	49091	3	8	1
R4	218.18	48	45777	2	2	2
R6	63.63	25	37738	6	3	3
R5	282.15	58	36843	1	1	4
R2	57.9	13	28659	7	4	5
R8	113.79	-3	28236	4	7	6
R7	18.38	1	16557	8	6	7
R1	97.54	4	14507	5	5	8

$ au_{xy,z}$	0.1766043
<i></i>	

Region	2002 Crossings Upgraded	2002-03 Incident Reduction	2002 Number Crossings	Rank Upgraded	Rank Reduction	Rank Crossings
R3	31.1	11	48946	6	4	1
R4	199.35	23	44409	2	2	2
R6	67.2	21	37241	3	3	3
R5	202.48	33	36258	1	1	4
R2	58.32	-39	28156	4	8	5
R8	33.66	-6	28081	5	6	6
R7	4.45	-17	16493	8	7	7
R1	28.11	-4	13814	7	5	8

I-9.	Kendall Partia	al Ranking f	or Year 2002

$ au_{xy,z}$	0.518545
--------------	----------

I-10.	Kendall Partial	Ranking for	Year 2003

Pagion	2003 Crossings	2003-04 Incident	2003 Number Crossings	Rank	Rank	Rank
Region	Opyraueu	Reduction	CIUSSIIIYS	opyraueu	Reduction	CIUSSINGS
R3	30.29	-42	48733	5	8	1
R4	83.14	-11	43177	4	6	2
R6	86.08	-12	35231	3	7	3
R5	204.1	-4	34610	1	4	4
R2	88.6	1	27908	2	2	5
R8	27.11	11	27164	6	1	6
R7	5.53	-2	16029	8	3	7
R1	14.84	-7	13430	7	5	8

$ au_{xy,z}$	0.0860663
--------------	-----------

Appendix J. Railroad Mergers

Railroad Incidents Cumulative Percent Railroad Incidents Cumulat Percent 1 UP 896 19.8 CSX 496 1 2 NS 649 34.2 UP 462 3 3 CSX 568 46.7 NS 4118 5 4 BNSF 354 54.5 BNSF 348 6 5 KCS 171 58.3 KCS 98 6 6 BN 166 62.0 ATK 83 7 7 CR 133 64.9 IC 83 7 8 IC 110 67.4 WC 45 7 9 NW 102 69.6 GTW 31 7 10 SP 97 71.8 SOO 27 8 11 WC 90 73.8 CRSH 22 8 13 ATSF 74				1994	2003		
Image: Percent Percent Percent 1 UP 896 19.8 CSX 496 1 2 NS 649 34.2 UP 462 3 3 CSX 568 46.7 NS 418 5 4 BNSF 354 54.5 BNSF 348 6 5 KCS 171 58.3 KCS 98 6 6 BN 166 62.0 ATK 83 7 7 CR 133 64.9 IC 83 7 8 IC 110 67.4 WC 445 7 9 NW 102 69.6 GTW 31 7 10 SP 97 71.8 SOO 27 8 12 CNW 83 75.6 FEC 21 8 13 ATSF 74 77.2 ICE 17 8		Railroad	Incidents	Cumulative	Railroad	Incidents	Cumulative
1 UP 896 19.8 CSX 496 1 2 NS 649 34.2 UP 462 3 3 CSX 568 46.7 NS 418 5 4 BNSF 354 54.5 BNSF 348 6 5 KCS 171 58.3 KCS 98 6 6 BN 166 62.0 ATK 83 7 7 CR 133 64.9 IC 83 7 8 IC 110 67.4 WC 45 7 9 NW 102 69.6 GTW 31 7 10 SP 97 71.8 SOO 27 8 11 WC 90 73.8 CRSH 22 8 12 CNW 83 75.6 FEC 21 8 13 ATSF 74 77.2 ICE 17 8 14 ATK 67 78.7 NIRC				Percent	8		Percent
13 ATSF 74 77.2 ICE 17 8 14 ATK 67 78.7 NIRC 17 8 15 SOO 56 80.0 SCAX 17 8 16 GTW 46 81.0 WE 17 8 17 CC 35 81.7 CC 12 8 18 SSW 32 82.5 AM 9 8 19 FEC 28 83.0	1 2 3 4 5 6 7 8 9 10 11 12	UP NS CSX BNSF KCS BN CR IC NW SP KC SP WC CNW	896 649 568 354 171 166 133 110 102 97 90 83	19.8 34.2 46.7 54.5 58.3 62.0 64.9 67.4 69.6 71.8 73.8 75.6	CSX UP NS BNSF KCS ATK IC WC GTW SOO CRSH FEC	496 462 418 348 98 83 83 45 31 27 22 21	19.0 36.7 52.7 66.1 69.8 73.0 76.2 77.9 79.1 80.2 81.0 81.8
23 IHB 18 85.1 4 Sub total 0ther 3,849 85.1% 2,223 85.2 RRs 674 14.9% 386 14.3 Total 14.9% 14.9% 386 14.3	13 14 15 16 17 18 19 20 21 22 23	ATSF ATK SOO GTW CC SSW FEC WE WSOR NIRC IHB Sub total Other RRs Total	74 67 56 46 35 32 28 28 24 22 18 3,849 674	77.2 78.7 80.0 81.0 81.7 82.5 83.0 83.7 84.2 84.7 85.1 85.1% 14.9%	ICE NIRC SCAX WE CC AM	17 17 17 12 9 2,223 386	82.5 83.1 83.8 84.4 84.9 85.2 85.2% 14.8%

J-1. Incidents at Public Crossings by Railroad, 1994 and 2003

Railroad	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
UP	86	74	86	71	90	94	60	63	49	47
BNSF	27	27	31	34	38	35	47	44	38	24
SP	21	13	17							
ATSF	14	11	5							
ATK	9	15	4	11	14	22	20	27	10	20
SJVR	8	4	8	3	1	4	1	3	1	5
SCAX	7	15	14	8	12	10	12	13	14	16
TVRR	3	3	1	1				1		
ССТ	2	1								1
CFNR	2	2	2	2		2		2	3	
ARZC	1		1							1
OTR	1			1						
SCBG	1		1							
SDNX	1	1		2	1	2		2		2
AL						1				1
CORP		1		1						2
CWR				1						
LAJ						1				
MET		1	1			1				
NVWT						2		1		
PCMZ						1	1	1		1
PHL					1			1		
RSIX								2	1	
SDII						4			1	
SERA					0	1				
SIVIV					2					
SIE		~	1					1		
		2			4			~		
ISLR					1			2		
Total	183	170	172	135	160	176	141	163	117	120
Railroads										
reporting	14	14	13	11	9	13	6	14	8	11
incidents										

J-2. Public Crossings Incidents in California by Railroad

Railroad	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
UP BNSF SP	293 55 34	226 52 39	217 44 32	214 70	144 67	191 64	186 76	182 70	155 58	148 55
ATSF KCS BN	22 22 11	13 26 10	13 24 5	38	34	30	19	28	11	16
RVSC SSW	6 6	5 11	3 9	6	3	2	1	2	6	7
TM TNFR	6 6	2	4	11	11	9 1	9 2	5	16	5 1
DGNO	5 4	5 1	4 1	3 1	3 3	9	7	4 2	5 2	6
PTRA TRE	4 4	5 1	4 1	4 1	3	1	3	6	4 1	6 2
ANR FWWR TIBR	3 3 3	8	8	4	1 1 6	9	1 6 6	2 3 4	1 6 4	3
SWGR WTLR	2 2	, 1 1	4	4	2	۷	0	4	4	۷
ATK CHRC	1	2	4	3	3	3	5	3	3	
	1 1 1	1	1	1		1		1		
PVS	1	1	1	1	2		1			
SSC TCT	1 1	1 1	1 1		2 1		1		2	
TELX TXPF	1 1	3	1		1					1
ANR ATCX					1 1		4	4		0
GCSR GVSR		2	1	1	1		1	I	1	2
HBT KRR			2	1 1			1			
LHRR PCN			1							1
SAW		1	1	1			1		1	
SW TN			1	•	1					2
TNMR TREX			1	1		1	2			
TXNW TXTX WATX						1	1			1
WI									1	
Total	502	428	391	368	289	324	329	313	277	258

J-3. Incidents for Texas by Railroad, 1994 through 2003

	from 1994 to 2003						
State	%	1994	2003	State	%	1994	2003
	Change	Incidents	Incidents		Change	Incidents	Incidents
	U						
СТ	-100.0%	4	0	LA	-34.7%	202	132
NV	-85.7%	7	1	CA	-34.4%	183	120
AK	-66.7%	3	1	VT	-33.3%	3	2
WI	-60.8%	176	69	CO	-32.6%	43	29
IA	-60.5%	157	62	UT	-30.8%	26	18
WY	-57.1%	7	3	SC	-29.9%	87	61
NC	-55.9%	145	64	VA	-28.6%	56	40
NM	-55.6%	18	8	GA	-28.2%	149	107
NE	-54.7%	86	39	WV	-26.8%	41	30
ID	-53.8%	39	18	TN	-25.7%	101	75
MO	-53.4%	116	54	FL	-19.8%	116	93
AL	-53.1%	177	83	MT	-11.1%	18	16
MN	-52.2%	138	66	KY	-10.0%	80	72
SD	-51.7%	29	14	MA	-6.3%	16	15
IN	-50.9%	275	135	NY	-2.7%	37	36
IL	-50.8%	309	152	PA	-2.7%	73	71
NH	-50.0%	2	1	DC	0.0%	0	0
ОН	-49.8%	229	115	HI	0.0%	0	0
MS	-49.7%	167	84	ND	10.0%	20	22
AR	-48.9%	139	71	NJ	11.4%	35	39
ТΧ	-48.6%	502	258	DE	20.0%	5	6
WA	-48.3%	60	31	AZ	29.2%	24	31
KS	-46.8%	94	50	MD	50.0%	12	18
ОК	-44.8%	116	64	ME	60.0%	5	8
OR	-42.1%	38	22	RI	+100.0%	0	2
МІ	-36.1%	158	101				
				Total	-42.3%	4,523	2,609

J-4. Public Crossing Incidents by State, Ranked by Percent Change

State	%	1994	2003	State	%	1994	2003
	Change	Crossings	Crossings		Change	Crossings	Crossings
50		07	0		0 40/	4.050	0 7 4 4
DC	-362.5%	37	8	NE	-8.4%	4,058	3,744
MA	-45.7%	1,192	818	MI	-7.8%	5,791	5,374
WY	-33.5%	530	397	VA	-7.3%	2,201	2,051
KS	-27.0%	7,912	6,231	GA	-6.9%	6,197	5,796
WV	-25.1%	1,972	1,576	SC	-6.6%	3,111	2,918
IL	-25.0%	10,265	8,213	KY	-6.4%	2,639	2,480
NH	-24.8%	503	403	TN	-5.9%	3,371	3,183
NJ	-22.2%	1,862	1,524	OH	-5.3%	6,713	6,374
AL	-19.2%	4,008	3,362	AR	-5.2%	3,325	3,162
ID	-19.1%	1,556	1,307	MO	-4.9%	4,872	4,643
WI	-17.6%	4,899	4,167	ME	-4.9%	882	841
PA	-16.9%	5,599	4,788	FL	-4.4%	4,077	3,905
IA	-14.2%	5,290	4,632	MT	-4.2%	1,533	1,471
WA	-13.3%	3,018	2,664	AZ	-4.2%	941	903
NY	-12.0%	3,279	2,928	MN	-3.9%	5,218	5,024
MS	-11.4%	3,028	2,717	OR	-3.3%	2,343	2,269
OK	-11.4%	4,627	4,155	CA	-2.9%	7,988	7,761
ТΧ	-11.2%	12,706	11,431	MD	-0.3%	693	691
ND	-11.1%	4,631	4,167	SD	-0.3%	2,137	2,131
NC	-10.7%	4,875	4,405	AK	0.0%	227	227
NM	-10.3%	815	739	СТ	0.0%	370	370
СО	-10.1%	2,076	1,885	VT	0.0%	496	496
IN	-10.0%	6,678	6,071	NV	3.7%	288	299
UT	-9.0%	1,009	926	DE	12.1%	269	306
LA	-8.5%	3,770	3,475	HI	25.0%	6	8
RI	-8.5%	128	118				
				Totals	-9.9%	166.011	149.534
				101010	010 /0	100,011	1-10,004

J-5. Public Crossings by State, Ranked by Percent Change from 1994 to 2003

State	%	%	State	%	%
	Change	Change		Change	Change
	Incidents	Crossings		Incidents	Crossings
СТ	-100.0%	0.0%	LA	-34.7%	-8.5%
NV	-85.7%	3.7%	CA	-34.4%	-2.9%
AK	-66.7%	0.0%	VT	-33.3%	0.0%
WI	-60.8%	-17.6%	CO	-32.6%	-10.1%
IA	-60.5%	-14.2%	UT	-30.8%	-9.0%
WY	-57.1%	-33.5%	SC	-29.9%	-6.6%
NC	-55.9%	-10.7%	VA	-28.6%	-7.3%
NM	-55.6%	-10.3%	GA	-28.2%	-6.9%
NE	-54.7%	-8.4%	WV	-26.8%	-25.1%
ID	-53.8%	-19.1%	TN	-25.7%	-5.9%
MO	-53.4%	-4.9%	FL	-19.8%	-4.4%
AL	-53.1%	-19.2%	MT	-11.1%	-4.2%
MN	-52.2%	-3.9%	KY	-10.0%	-6.4%
SD	-51.7%	-0.3%	MA	-6.3%	-45.7%
IN	-50.9%	-10.0%	NY	-2.7%	-12.0%
IL	-50.8%	-25.0%	PA	-2.7%	-16.9%
NH	-50.0%	-24.8%	DC	0.0%	-362.5%
ОН	-49.8%	-5.3%	HI	0.0%	25.0%
MS	-49.7%	-11.4%	ND	10.0%	-11.1%
AR	-48.9%	-5.2%	NJ	11.4%	-22.2%
ТΧ	-48.6%	-11.2%	DE	20.0%	12.1%
WA	-48.3%	-13.3%	AZ	29.2%	-4.2%
KS	-46.8%	-27.0%	MD	50.0%	-0.3%
OK	-44.8%	-11.4%	ME	60.0%	-4.9%
OR	-42.1%	-3.3%	RI	+100.0%	-8.5%
MI	-36.1%	-7.8%			

J-6. Changes in Public Incidents and Public Crossings by State

Region #	Region Name	States in the Region
1	Northeast	ME, NH, VT, MA, NY, RI, CT, NJ
2	Middle Atlantic	PA, OH, WV, VA, MD, DE
3	Southeast	KY, TN, NC, SC, GA, AL, MS, FL
4	North Central	MN, WI, IL, IN, MI
5	South	NM, TX, OK, AR, LA
6	Central	CO, NE, KS, IA, MO
7	Southwest	CA, NV, UT, AZ
8	Northwest	AK, WA, OR, ID, MT, WY, ND, SD

Table J-7. The Eight FRA Regions

FRA Region	1994 Incidents	2003 Incidents	Percent Change
4	104	447	10 70/
1 7	283	107	-12.7%
2	487	330	-32.2%
3	1,119	759	-32.2%
8	260	154	-40.8%
6	526	306	-41.8%
5	1,074	610	-43.2%
4	1,116	590	-47.1%
total	4,999	3,063	-38.7%

J-8. Percent Decline in Public and Private Incidents by FRA Region

J-9. Public and Private Incidents for First Quarter (January, February, March) of Year, 1994 through 2006

		_
Year	Incidents	Percent
		Decline
1994	1,437	
1995	1,245	-13.4%
1996	1,200	-3.6%
1997	1,060	-11.7%
1998	918	-13.4%
1999	895	-2.5%
2000	899	0.4%
2001	865	-3.8%
2002	777	-10.2%
2003	756	-2.7%
2004	766	1.3%
2005	724	-5.5%
2006	696	-3.9%

J-10. Incidents as Public and Private Crossings, 1980 through 2005

Year	Incidents	Year	Incidents	Year	Incidents	Year	Incidents
1980	10,796	1987	6,426	1994	4,979	2001	3,237
1981	9,461	1988	6,617	1995	4,633	2002	3,077
1982	7,932	1989	6,526	1996	4,257	2003	2,977
1983	7,305	1990	5,715	1997	3,865	2004	3,072
1984	7,456	1991	5,388	1998	3,508	2005	3,035
1985	7,073	1992	4,910	1999	3,489	2006	696*
1986	6,513	1993	4,892	2000	3,502		

* 2006 incident counts are for months January, February, and March

Appendix K. Additional Sources

Additional Sources

Bowman, B.L. and Colson C., "Current State Practices and Recommendations for Improving the Rail-Highway Grade Crossing Program," Alabama Highway Department, 1994.

Burgess, M., "Contrasting Rural and Urban Fatal Crashes 1994-2003," Washington, DC: National Highway Transportation Safety Administration, National Center for Statistics and Analysis, December 2005.

Carroll, A.A. and Warren, J.D., "Closure of U.S. Highway-Rail Grade Crossings: Status Report (03-3800)", prepared for the Transportation Research Board, Washington, DC, August 2001.

Federal Railroad Administration, "Federal Railroad Administration Guide for Preparing Accident/Incident Reports," Washington, DC: U.S. DOT/FRA, May 2003.

Gou, M. and Bellavigne-Ladoux, O., "Impact of Heavy Vehicles on Crossing Safety–Development of an Adapted Design Tool," Ottawa, ON: Transport Canada, May 2003.

Mead, K.M., "Highway-Railroad Grade Crossing Safety Issues; Statement of The Honorable Kenneth M. Mead, Inspector General," Washington, DC: U.S. DOT, July 2005.

National Highway Transportation Safety Administration, "National Automotive Sampling System (NASS), General Estimates System (GES), Analytical User's Manual 1988-2004," Washington, DC: National Highway Transporation Safety Administration, 2004.

National Transportation Safety Board, "Safety at Passive Grade Crossings", Washington, DC: National Transportation Safety Board, July 1998.

Office of Safety, Federal Railroad Administration, "Report on High Risk Crossings and Mitigation Efforts by State," Washington, DC: U.S. DOT/FRA, February 2002.

Park, Y.J. and Saccomanno, F.F., "Evaluating Factors Affecting Safety at Highway-Railway Grade Crossings," prepared for the Transportation Research Board, Washington, DC, November 2004.

Saks, J. and Carroll, A., "North Carolina DOT Traffic Separation Studies Volume I–Assessment," prepared for the Federal Railroad Administration, Cambridge, MA: U.S. DOT/FRA, September 2004.

Stackhouse, S., "Effectiveness of Marketing Campaigns for Grade Crossing Safety," Minneapolis, MN: University of Minnesota, Minneapolis and Minnesota Department of Transportation, September 1996.

United States General Accounting Office, "Railroad Safety, Status of Efforts to Improve Railroad Crossing Safety," Washington, DC: U.S. General Accounting Office, August 1995.

References

- 1. U.S. Department of Transportation, Secretary of Transportation, "Rail-Highway Crossing Safety Action Plan," Washington, DC: U.S. DOT, June 1994.
- 2. Mok, S. and Savage, I., "Why Has Safety Improved at Rail-Highway Grade Crossings?," <u>Risk Analysis</u> 25.4, November 2005, pages 867-881.
- 3. Mozenter, J. and Multer, J. "Documenting the Strength and Weakness of Database for Use in Analyzing Highway-Rail Grade Crossing," prepared for the Federal Railroad Administration, Cambridge, MA: U.S. DOT/FRA, March 2004.
- 4. Laffey, S., "Grade Crossings of Northeastern Illinois: An Analysis of the FRA Grade Crossing and Grade Crossing Accident Inventories, an Analysis of the Potential Impacts from the Horn Sounding Requirement of the Swift Rail Development Act, Chicago, Illinois,"Chicago, IL: Illinois Commerce Commission, 2004.
- 5. Federal Highway Administration, Office of Highway Policy Information, "Highway Statistics (1994-2003)," Washington, DC: U.S. DOT/FHWA, 2004.
- 6. Office of the Inspector General, "Audit of the Highway-Rail Grade Crossing Safety Program, Office of the Inspector General", Washington, DC: OIG, June 2004.
- 7. Federal Railroad Administration, "Rail Highway Crossing Inventory Bulletin (1994-1996)", Washington, DC: U.S. DOT/FRA, 1997.
- 8. Federal Railroad Administration, "Railroad Safety Statistics Annual Reports (1997-2003)," Washington, DC: U.S. DOT/FRA, 2004.
- 9. Carroll, A.A. and Haines, M. "Post-Incident Aggravating Risk Factors in Highway-Rail Grade Crossing Crashes," prepared for the Federal Railroad Administration, Cambridge, MA: U.S. DOT/FRA, October 2003.
- Mironer, M., Coltlman, M., et al., "Assessment of Risks for High-Speed Rail Grade Crossings on the Empire Corridor", prepared for the Federal Railroad Administration, Cambridge, MA: US DOT/FRA, August 2000.
- 11. Carroll, A.A., J. Multer, and. Markos S.H, "Use of Auxiliary External Alerting Devices to Improve Locomotive Conspicuity," prepared for the Federal Railroad Administration, Cambridge, MA: U.S. DOT/FRA, July 1995.
- 12. PRC Inc., "Highway-Railroad Grade Crossing Active Signal Systems Analysis," prepared for the Federal Railroad Administration, Reston, VA: U.S. DOT/FRA, November 1996.

- Farr, E.H., "Rail-Highway Crossing Resource Allocation Procedure–User's Guide, Third Edition," prepared for the Federal Railroad Administration, Washington, DC: U.S. DOT/FRA, August 1987.
- 14. Federal Highway Administration, "Guidance on Traffic Control Devices at Highway-Rail Grade Crossings," Washington, DC: USDOT/FHWA, November 2002.
- 15. Mitra, A., *Fundamentals of Quality Control and Improvement*, Upper Saddle River, New Jersey: Prentice Hall, 1998.
- 16. Siegel, S., *Nonparametric Statistics for the Behavioral Sciences*, New York: McGraw-Hill Book Company, Inc, 1956.
- United States Department of Transportation, "Accidents That Shouldn't Happen; A Report of the Grade Crossing Safety Task Force to Secretary Federico Pena," Washington, DC: U.S. DOT, March 1996.
- 18. French, P., "U.S. Railroad Safety Statistics and Trends," Washington, DC: Association of American Railroads, January 2006.
- Savage, I., "Does Public Education Improve Rail-Highway Crossing Safety?," Evanston, IL: Department of Economics and the Transportation Center Northwestern University, March 2005.
- 20. Departmental Evaluation Services Transport Canada, "Evaluation of Transport Canada's Contribution to Operation Lifesaver", Ottawa, ON: Transport Canada, November 2003.
- Sposato, S., Bien-Aime, P., and Chaudhary, M. "Public Education and Enforcement Research Study–Draft Report", prepared for the Federal Railroad Administration, Cambridge, MA, June 2006.
- 22. Brewer, K.A., "Driver's Behavior at Railroad Grade Crossings: Before and After Safety Campaign, Final Report,"Ames, IA: Iowa State University and Iowa Department of Transportation, March 1992.
- 23. Association of American Railroads Policy and Economics Department, "Class One Railroad Statistics", Washington, DC: Association of American Railroads, July 2006.
- 24. Carroll, A.A. and Warren J.D., "The Use of Photo Enforcement at Highway-Rail Grade Crossing in the U.S.", prepared for the Transportation Research Board, Washington, DC, July 2001.
- 25. National Center for Statistics and Analysis, "Rail-Highway Crossing Safety–Fatal Crash and Demographic Descriptors", Washington, DC: National Center for Statistics and Analysis, November 1994.

Acronyms

AADT	average annual daily traffic
ADAPT_X	Accident Data Analytical Prospective Tool for Highway- Grade Crossing Incidents
ATSF	Atchison Topeka Santa Fe Railway
BN	Burlington Northern Railroad Co.
BNSF	Burlington Northern Santa Fe Railway Co.
CDL	Commercial Driver's License
CNW	Chicago Northwestern Railway Co.
Crossing Inventory	National Highway-Rail Crossing Inventory
FARS	Fatality Analysis Reporting System
FHWA	Federal Highway Administration
FMCSA	Federal Motor Carrier Safety Administration
FRA	Federal Railroad Administration
RAIRS Grade Crossing	Rail Accident Incident Reporting System–Highway-Rail Grade Crossing
RAIRS Rail Equipment	Railroad Accident Incident Reporting System–Rail Equipment
SP	Southern Pacific Transportation Co.
TMT	train miles traveled
TRB	Transportation Research Board
UP	Union Pacific Railroad Co.
USDOT	U.S. Department of Transportation
VMT	vehicle miles traveled
Volpe Center	John A. Volpe National Transportation Systems Center

Glossary

Exposure–A measure of grade crossing traffic that includes vehicle miles traveled, Class I train miles traveled, and the number of at-grade crossings

Fatality Rate-The number of grade crossing fatalities per vehicle miles traveled

Incident-Fatality Rate-The number of fatalities per grade crossing incident

Incident-Injury Rate-The number of injuries per grade crossing incident

Incident Rate-The number of grade crossing incidents per vehicle miles traveled

Kendall Partial Rank Correlation Coefficient–A nonparametric method of partial correlation using ranks, in which the correlation between two variables is found with the third variable held constant

Overlap–The number of incidents that can be attributed to behaviors associated with more than one of the success factors

Pareto Diagram–Graphical tool used to summarize and display the relative importance of the differences between groups of data

Percent Impact–Percentage of incidents, from 1994 to 2003, that can be attributed to behaviors that the factor was attempting to change

Percent Reduction–Percentage of incidents reduced, from 1994 to 2003, which can be attributed to the safety countermeasures for a factor

Success Factors–The safety initiatives that were the most successful in reducing incidents at highway-rail grade crossings during the years 1994 through 2003